Loading...
HomeMy WebLinkAboutFile Documents.232 E Main St.0078-2020-BCHO (85)Structural Calculations 232 E Main St Aspen, Colorado Issued for Permit Feb 9, 2021 Expires 10-31-2021 K.ENG LLC 1017 W Washington Unit 2G Chicago, Illinois 60607 Job No. 18-1027 SECTION DESCRIPTION PDF PAGES 1 design loads 2-10 2 shear walls 11-66 3 anchorage of masonry shear walls 67-68 4 exterior masonry walls 69-76 5 lintels 77-82 6 column footings (plus beam reactions) 83-84 7 wall footings: 2, 3, 18/S4.0 85-87 8 shear wall footings: SW3, SW4, SW7 88-134 9 Mat / combined footings 135-166 10 CLT wall connection to Foundation 167 03/01/2021 03/01/2021 03/01/2021 03/01/2021 03/01/2021 03/01/2021 03/01/2021 03/01/2021 03/01/2021 03/01/2021 03/01/2021 03/01/2021 Torsional Analysis of Rigid Diaphragm K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:SECOND FLOOR / ROOF DECK K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 General Information IBC 2015, CBC 2016, ASCE 7-10 17.550 16.40 1.50 26.90 5.00 51.10 53.50 Center of Shear Application : Distance from "X" datum point ft Distance from "Y" datum point ft Load Orientation Angular Increment deg Applied Lateral Force in "X" DIrection k Maximum Dimensions : Ecc. as % of Maximum Dimension Accidental Torsion values per ASCE 7-05 12.8.4.2 Accidental Eccentricity +/- from "Y" Coord. of Center of Load Application : "X" dist. from Datum Load Location Angular Increment Accidental Eccentricity +/- from "X" Coord. of Center of Load Application : Along "X" Axis ft Along "Y" Axis ft % Applied Lateral Force in "Y" DIrection k 2.675 ft ft "Y" dist. from Datum -16.018 18.225 ft Note:These loads are resolved into X & Y components when applied to the system of elements at angular increments. 2.555 ft Center of Rigidity Location (calculated) . . . 90.0 90.0 deg Wall Information Length 52.4 ftft Height 12.2 ft SW2 -23.75 26.6 90 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 4.9 in ft in Fix-Pin E - Shear 1.8 Mpsi9.4287E+003 3.7400E-005 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Length 13.8 ftft Height 13.4 ft SW3 -17 53.2 0 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 4.9 in ft in Fix-Pin E - Shear 1.8 Mpsi4.7437E+004 5.4732E-004 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Length 19.5 ftft Height 13 ft SW4 5.5 47.8 90 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 9.625 in ft in Fix-Pin E - Shear 1.8 Mpsi4.0479E+003 1.1459E-004 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Length 6.7 ftft Height 13 ft SW6 18.5 50.6 90 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 9.625 in ft in Fix-Pin E - Shear 1.8 Mpsi1.1781E+004 1.8209E-003 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Length 14.7 ftft Height 12 ft SW7 6.35 30.8 0 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 9.625 in ft in Fix-Pin E - Shear 1.8 Mpsi4.2243E+003 1.8214E-004 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Length 12 ftft Height 11.2 ft SW8 -18.2 0 0 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 9.625 in ft in Fix-Pin E - Shear 1.8 Mpsi4.2081E+003 2.5236E-004 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Length 12 ftft Height 12 ft SW9 23.3 0 0 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 9.625 in ft in Fix-Pin E - Shear 1.8 Mpsi5.1747E+003 3.0014E-004 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Resisting Element Max Shear along Member Local "x-x" Axis Load Angle X-Ecc (ft)Load Angle X-Ecc (ft)Shear Force (k)Shear Force (k)Y-Ecc (ft)Y-Ecc (ft) ANALYSIS SUMMARY Maximum shear forces applied to resisting elements. Eccentricity with respect to Center of Rigidity Max Shear along Member Local "y-y" Axis 90 -20.07 8.67 17.934SW2 0 -14.96 8.67 0.000 0 -17.52 11.35 3.271SW3 90 -14.96 8.67 0.000 90 -17.52 11.35 8.539SW4 0 -14.96 8.67 0.000 03/01/2021 Torsional Analysis of Rigid Diaphragm K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:SECOND FLOOR / ROOF DECK K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 Resisting Element Max Shear along Member Local "x-x" Axis Load Angle X-Ecc (ft)Load Angle X-Ecc (ft)Shear Force (k)Shear Force (k)Y-Ecc (ft)Y-Ecc (ft) ANALYSIS SUMMARY Maximum shear forces applied to resisting elements. Eccentricity with respect to Center of Rigidity Max Shear along Member Local "y-y" Axis 90 -17.52 11.35 0.711SW6 0 -14.96 8.67 0.000 0 -17.52 11.35 7.758SW7 90 -14.96 8.67 0.000 0 -17.52 6.00 4.116SW8 90 -14.96 8.67 0.000 0 -17.52 6.00 3.461SW9 90 -14.96 8.67 0.000 Legend :Defined Wall Center of Rigidity Center of Mass Accidental eccentricity application boundary DatumX Layout of Resisting Elements 03/01/2021 Torsional Analysis of Rigid Diaphragm K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:NORTH GABLE ROOF K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 General Information IBC 2015, CBC 2016, ASCE 7-10 21.50 17.30 13.80 29.50 5.00 27.30 57.90 Center of Shear Application : Distance from "X" datum point ft Distance from "Y" datum point ft Load Orientation Angular Increment deg Applied Lateral Force in "X" DIrection k Maximum Dimensions : Ecc. as % of Maximum Dimension Accidental Torsion values per ASCE 7-05 12.8.4.2 Accidental Eccentricity +/- from "Y" Coord. of Center of Load Application : "X" dist. from Datum Load Location Angular Increment Accidental Eccentricity +/- from "X" Coord. of Center of Load Application : Along "X" Axis ft Along "Y" Axis ft % Applied Lateral Force in "Y" DIrection k 2.895 ft ft "Y" dist. from Datum 5.986 1.560 ft Note:These loads are resolved into X & Y components when applied to the system of elements at angular increments. 1.365 ft Center of Rigidity Location (calculated) . . . 90.0 90.0 deg Wall Information Length 19.5 ftft Height 8.7 ft SW4 5.5 47.8 90 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 9.625 in ft in Fix-Pin E - Shear 1.8 Mpsi1.2150E+003 5.1407E-005 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Length 9.5 ftft Height 25 ft SW5 13.8 53.8 0 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 9.625 in ft in Fix-Pin E - Shear 1.8 Mpsi5.9044E+004 4.3899E-003 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Length 6.75 ftft Height 11.7 ft SW6 18.5 50.6 90 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 9.625 in ft in Fix-Pin E - Shear 1.8 Mpsi8.5273E+003 1.3224E-003 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Length 12 ftft Height 8.5 ft SW9 23.3 0 0 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 9.625 in ft in Fix-Pin E - Shear 1.8 Mpsi1.8415E+003 1.3112E-004 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Resisting Element Max Shear along Member Local "x-x" Axis Load Angle X-Ecc (ft)Load Angle X-Ecc (ft)Shear Force (k)Shear Force (k)Y-Ecc (ft)Y-Ecc (ft) ANALYSIS SUMMARY Maximum shear forces applied to resisting elements. Eccentricity with respect to Center of Rigidity Max Shear along Member Local "y-y" Axis 90 -9.18 27.94 18.621SW4 0 -6.45 27.94 0.000 0 -7.81 30.83 10.960SW5 90 -6.45 27.94 0.000 0 -7.81 30.83 8.219SW6 0 -6.45 27.94 0.000 0 -7.81 25.04 12.481SW9 90 -6.45 27.94 0.000 03/01/2021 Torsional Analysis of Rigid Diaphragm K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:NORTH GABLE ROOF K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 Legend :Defined Wall Center of Rigidity Center of Mass Accidental eccentricity application boundary DatumX Layout of Resisting Elements 03/01/2021 Torsional Analysis of Rigid Diaphragm K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:SOUTH HIGH ROOF K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 General Information IBC 2015, CBC 2016, ASCE 7-10 18.0 20.90 26.70 15.30 5.00 53.30 31.10 Center of Shear Application : Distance from "X" datum point ft Distance from "Y" datum point ft Load Orientation Angular Increment deg Applied Lateral Force in "X" DIrection k Maximum Dimensions : Ecc. as % of Maximum Dimension Accidental Torsion values per ASCE 7-05 12.8.4.2 Accidental Eccentricity +/- from "Y" Coord. of Center of Load Application : "X" dist. from Datum Load Location Angular Increment Accidental Eccentricity +/- from "X" Coord. of Center of Load Application : Along "X" Axis ft Along "Y" Axis ft % Applied Lateral Force in "Y" DIrection k 1.555 ft ft "Y" dist. from Datum 6.433 31.10 ft Note:These loads are resolved into X & Y components when applied to the system of elements at angular increments. 2.665 ft Center of Rigidity Location (calculated) . . . 90.0 90.0 deg Wall Information Length 30.7 ftft Height 16.2 ft SW1 0 15.35 90 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 4.9 in ft in Fix-Pin E - Shear 1.8 Mpsi3.7674E+004 1.3843E-004 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Length 12.75 ftft Height 16.2 ft SW10 53.3 6.38 90 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 5.5 in ft in Fix-Pin E - Shear 1.378 Mpsi8.3795E+004 1.2838E-003 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.378 MpsiAlong Wall "x" Dir Length 8 ftft Height 16.2 ft SW11 53.3 28.12 90 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 5.5 in ft in Fix-Pin E - Shear 1.378 Mpsi1.3355E+005 4.7031E-003 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.378 MpsiAlong Wall "x" Dir Length 12 ftft Height 19.5 ft SW8 5.68 31.1 0 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 9.625 in ft in Fix-Pin E - Shear 1.8 Mpsi2.2186E+004 1.1033E-003 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Length 12 ftft Height 20.5 ft SW9 47.04 31.1 0 degWall Deflections (Stiffness) for 1.0 kip load :Thickness 9.625 in ft in Fix-Pin E - Shear 1.8 Mpsi2.5776E+004 1.2694E-003 in Label :X Wall C.G. Location Y Wall C.G. Location Wall Angle CCW Wall FixityAlong Wall "y" Dir E - Bending 1.8 MpsiAlong Wall "x" Dir Resisting Element Max Shear along Member Local "x-x" Axis Load Angle X-Ecc (ft)Load Angle X-Ecc (ft)Shear Force (k)Shear Force (k)Y-Ecc (ft)Y-Ecc (ft) ANALYSIS SUMMARY Maximum shear forces applied to resisting elements. Eccentricity with respect to Center of Rigidity Max Shear along Member Local "y-y" Axis 90 -22.93 -15.80 27.369SW1 0 -17.60 -15.80 0.000 90 -17.60 -15.80 7.404SW10 0 -17.60 -15.80 0.000 90 -17.60 -15.80 2.021SW11 0 -17.60 -15.80 0.000 0 -20.27 -14.25 9.630SW8 90 -17.60 -15.80 0.000 0 -20.27 -14.25 8.370SW9 90 -17.60 -15.80 0.000 03/01/2021 Torsional Analysis of Rigid Diaphragm K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:SOUTH HIGH ROOF K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 Legend :Defined Wall Center of Rigidity Center of Mass Accidental eccentricity application boundary DatumX Layout of Resisting Elements 03/01/2021 03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW1 7. 6 3 i n Distributed Vertical Reinforcement: #4 @ 32 in Horizontal Reinforcement: 8" wall Std Truss-Mesh HB Lox All 120 @ 24 30.67 ft 16 . 2 f t Design Detail Check Summary Ratio Check Provided Required Combination ----- Strength Checks ----- 0.000 Axial Tension 32 k 0 k 1.0D + 1.0S 0.362 Shear 58.69 psi 21.25 psi (0.6 - 0.14Sds)D + 0.7E 0.070 Axial Compression 552 k 38.72 k 1.0D + 1.0S 0.315 Axial+Flexure 1007 ft·k 316.9 ft·k (0.6 - 0.14Sds)D + 0.7E ----- Reinforcement Limits ----- 0.500 Shear Bar Spacing 24 in 48 in 1.0D + 1.0S 0.102 Vert Bar Area 0.01 in²0 in²1.0D + 1.0S 0.333 Vert Bar Spacing 32 in 96 in 1.0D + 1.0S Criteria Use basic criteria from common project s...Yes Building Code TMS 402-13 (MSJC... Strength Combinations ASCE 7-10 (ASD) Apply Sds Factor to Seismic Combinatio... Yes Sds (from ASCE 7) 0.25 Seismic R Value 2.00 f'm 2000 psi fy 60000 psi Specify Wall Weight Manually No Block Weight Normal weight Design As Clay Masonry No Include Wall Self-Weight Yes End Bars Only For Flexural/Axial Analysis No Multiply Seismic Shear By 1.5 No Load Combinations ASCE 7-10 (ASD) 1.0D + 1.0S (1.0 - 0.14Sds)D + 0.7E (1.0 + 0.14Sds)D + 0.7E 1.0D (1.0 - 0.105Sds)D + 0.75S + 0.525E (1.0 + 0.105Sds)D + 0.75S + 0.525E 1.0D + 0.75S (0.6 - 0.14Sds)D + 0.7E (0.6 + 0.14Sds)D + 0.7E 0.6D Interaction Diagram 1500 1100 700 300 -100 -5000 1000 2000 3000 4000 5000 Moment (ft·k) Axial Force (k) Interaction Diagram Loads Summary Load Set Source Axial Pt Load Offset from CenterEnd 1 Axial Distr...End 2 Axial Distr...Shear Pt Load Shear Distribute...Shear Offset Fro...Moment Dead 3.3 k 3.3 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Snow 6.6 k 3.3 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Earthquake 0 k 0 ft 0 lb/ft 0 lb/ft 27.4 k 0 lb/ft 0 ft 0 ft·k Load Combination Factored Axial Factored Moment Factored Shear Factored Wall Weight Design Compression Design Tension (k)(ft·k)(k)(k)(k)(k) 1.0D + 1.0S 9.9 0 0 28.82 38.72 0 (1.0 - 0.14Sds)D + 0.7E 3.18 0 19.18 27.8 30.99 0 (1.0 + 0.14Sds)D + 0.7E 3.42 0 19.18 29.83 33.25 0 1.0D 3.3 0 0 28.82 32.12 0 (1.0 - 0.105Sds)D + 0.75S + 0.525E 8.16 0 14.39 28.06 36.22 0 (1.0 + 0.105Sds)D + 0.75S + 0.525E 8.34 0 14.39 29.58 37.91 0 1.0D + 0.75S 8.25 0 0 28.82 37.07 0 (0.6 - 0.14Sds)D + 0.7E 1.86 0 19.18 16.28 18.14 0 (0.6 + 0.14Sds)D + 0.7E 2.1 0 19.18 18.3 20.4 0 0.6D 1.98 0 0 17.29 19.27 0 Strength Check Results Summary QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 1 of 4 Tuesday 02/09/21 11:02 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW1 Load Combination Design Moment Design Shear Stress Allowable Axial Allowable Moment Allowable Shear Stress (ft·k)(psi)(k)(ft·k)(psi) 1.0D + 1.0S 32.67 0 552 1263 0 (1.0 - 0.14Sds)D + 0.7E 321.2 21.25 552 1167 60.06 (1.0 + 0.14Sds)D + 0.7E 322 21.25 552 1196 60.3 1.0D 10.89 0 552 1181 0 (1.0 - 0.105Sds)D + 0.75S + 0.525E 260 15.94 552 1231 59.42 (1.0 + 0.105Sds)D + 0.75S + 0.525E 260.5 15.94 552 1253 59.59 1.0D + 0.75S 27.23 0 552 1243 0 (0.6 - 0.14Sds)D + 0.7E 316.9 21.25 552 1007 58.69 (0.6 + 0.14Sds)D + 0.7E 317.6 21.25 552 1035 58.93 0.6D 6.53 0 552 1021 0 Strength Check Results Summary (continued) QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 2 of 4 Tuesday 02/09/21 11:02 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW1 Design Forces Factored Loads Wall Weight 28.82 k 30.67 ft 16 . 2 f t 9.9 k 38.72 k 0 k32.67 ft·k Shear Check Anv bd 2.5 in 361 in 6.27 ft² = = = fv V Anv 0 k 6.27 ft² 0 psi = = = There is zero applied shear force in this load case  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 16.2 ft 2.67 in / 72.9071  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 10.52 ft² 0.65 0 in²32000 psi + 1 16.2 ft 140 2.67 in 2 ^ - = 552 k = P 38.72 k  Pa 552 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 2.55 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 361 in 2 / 180.520 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.01 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 32 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 2.55 in² 19.49 ft² / 0.0009 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 32.67 ft·k 0 k 361 in INF  1.0 = = P 38.72 k < 0.05 f'm An 0.05 2000 psi 10.52 ft² 151.5 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 1250 2500 3750 5000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 38.72 k TENSION controlled (fs = Fs = 32000 psi) k = 0.179 36 8 i n 65 . 9 9 i n 0.00024 -0.00112 439.7 psi fs = 32000 psi 72.68 k 6.28 k 5.78 k 5.1 k 4.43 k 3.75 k 3.08 k 2.4 k 1.73 k 1.06 k 0.38 k 38.72 k 1263 ft·k P 38.72 k = Mallow 1263 ft·k from interaction diagram given P = M 32.67 ft·k  Mallow 1263 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: 1.0D + 1.0S] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 3 of 4 Tuesday 02/09/21 11:02 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW1 Design Forces Factored Loads Wall Weight 16.28 k 30.67 ft 16 . 2 f t 1.86 k 19.18 k 18.14 k -19.18 k316.9 ft·k Shear Check Anv bd 2.5 in 361 in 6.27 ft² = = = fv V Anv 19.18 k 6.27 ft² 21.25 psi = = = g 0.750 partially grouted shear wall = Fvm 1 2 4.0 1.75 M Vd - f'm 0.25 P An + = 1 2 4.0 1.75 316.9 ft·k 19.18 k 361 in - 2000 psi 0.25 18.14 k 10.52 ft² + = 70.95 psi = Fvs 0.5 Av Fs d An s 0.5 0.05 in²32000 psi 361 in 10.52 ft²24 in 7.31 psi = = = Fv Fvm Fvs + g 70.95 psi 7.31 psi + 0.750 58.69 psi = = = 3f'm g 3 2000 psi 0.750 100.6 psi = = 2f'm g 2 2000 psi 0.750 67.08 psi = = Fv_limit 87.71 psi = Interpolated limit on F v from eqns 826 - and 827 - Limit did not govern fv 21.25 psi  Fv 58.69 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 16.2 ft 2.67 in / 72.9071  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 10.52 ft² 0.65 0 in²32000 psi + 1 16.2 ft 140 2.67 in 2 ^ - = 552 k = P 18.14 k  Pa 552 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 2.55 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 361 in 2 / 180.520 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.01 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 32 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 2.55 in² 19.49 ft² / 0.0009 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 316.9 ft·k 19.18 k 361 in 0.5491 < 1.0 = = P 18.14 k < 0.05 f'm An 0.05 2000 psi 10.52 ft² 151.5 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 1250 2500 3750 5000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 18.14 k TENSION controlled (fs = Fs = 32000 psi) k = 0.154 36 8 i n 56 . 6 4 i n 0.00020 -0.00112 365.9 psi fs = 32000 psi 52.99 k 6.28 k 5.79 k 5.14 k 4.48 k 3.83 k 3.18 k 2.52 k 1.87 k 1.21 k 0.56 k 18.14 k 1007 ft·k P 18.14 k = Mallow 1007 ft·k from interaction diagram given P = M 316.9 ft·k  Mallow 1007 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (0.6 - 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 4 of 4 Tuesday 02/09/21 11:02 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW2 7. 6 3 i n Distributed Vertical Reinforcement: #4 @ 32 in Horizontal Reinforcement: 8" wall Std Truss-Mesh HB Lox All 120 @ 24 52.4 ft 14 . 6 7 f t Design Detail Check Summary Ratio Check Provided Required Combination ----- Strength Checks ----- 0.000 Axial Tension 32 k 0 k (1.0 - 0.14Sds)D + 0.7E 0.118 Shear 68.23 psi 8.06 psi (0.6 - 0.14Sds)D + 0.7E 0.047 Axial Compression 990.6 k 46.15 k (1.0 + 0.14Sds)D + 0.7E 0.053 Axial+Flexure 2635 ft·k 140.3 ft·k (0.6 - 0.14Sds)D + 0.7E ----- Reinforcement Limits ----- 0.500 Shear Bar Spacing 24 in 48 in (1.0 - 0.14Sds)D + 0.7E 0.102 Vert Bar Area 0.01 in²0 in²(1.0 - 0.14Sds)D + 0.7E 0.333 Vert Bar Spacing 32 in 96 in (1.0 - 0.14Sds)D + 0.7E Criteria Use basic criteria from common project s...Yes Building Code TMS 402-13 (MSJC... Strength Combinations ASCE 7-10 (ASD) Apply Sds Factor to Seismic Combinatio... Yes Sds (from ASCE 7) 0.25 Seismic R Value 2.00 f'm 2000 psi fy 60000 psi Specify Wall Weight Manually No Block Weight Normal weight Design As Clay Masonry No Include Wall Self-Weight Yes End Bars Only For Flexural/Axial Analysis No Multiply Seismic Shear By 1.5 No Load Combinations ASCE 7-10 (ASD) (1.0 - 0.14Sds)D + 0.7E (1.0 + 0.14Sds)D + 0.7E (1.0 - 0.105Sds)D + 0.525E (1.0 + 0.105Sds)D + 0.525E 1.0D (0.6 - 0.14Sds)D + 0.7E (0.6 + 0.14Sds)D + 0.7E 0.6D Interaction Diagram 3000 2200 1400 600 -200 -10000 3000 6000 9000 12000 15000 Moment (ft·k) Axial Force (k) Interaction Diagram Loads Summary Load Set Source Axial Pt Load Offset from CenterEnd 1 Axial Distr...End 2 Axial Distr...Shear Pt Load Shear Distribute...Shear Offset Fro...Moment Earthquake 0 k 0 ft 0 lb/ft 0 lb/ft 17.9 k 0 lb/ft 0 ft 0 ft·k Load Combination Factored Axial Factored Moment Factored Shear Factored Wall Weight Design Compression Design Tension (k)(ft·k)(k)(k)(k)(k) (1.0 - 0.14Sds)D + 0.7E 0 0 12.53 43.02 43.02 0 (1.0 + 0.14Sds)D + 0.7E 0 0 12.53 46.15 46.15 0 (1.0 - 0.105Sds)D + 0.525E 0 0 9.4 43.41 43.41 0 (1.0 + 0.105Sds)D + 0.525E 0 0 9.4 45.76 45.76 0 1.0D 0 0 0 44.59 44.59 0 (0.6 - 0.14Sds)D + 0.7E 0 0 12.53 25.18 25.18 0 (0.6 + 0.14Sds)D + 0.7E 0 0 12.53 28.32 28.32 0 0.6D 0 0 0 26.75 26.75 0 Strength Check Results Summary QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 1 of 5 Tuesday 02/09/21 11:05 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW2 Load Combination Design Moment Design Shear Stress Allowable Axial Allowable Moment Allowable Shear Stress (ft·k)(psi)(k)(ft·k)(psi) (1.0 - 0.14Sds)D + 0.7E 140.3 8.06 990.6 3015 69.55 (1.0 + 0.14Sds)D + 0.7E 140.3 8.06 990.6 3083 69.78 (1.0 - 0.105Sds)D + 0.525E 105.3 6.05 990.6 3024 69.58 (1.0 + 0.105Sds)D + 0.525E 105.3 6.05 990.6 3074 69.75 1.0D 0 0 990.6 3049 0 (0.6 - 0.14Sds)D + 0.7E 140.3 8.06 990.6 2635 68.23 (0.6 + 0.14Sds)D + 0.7E 140.3 8.06 990.6 2703 68.47 0.6D 0 0 990.6 2671 0 Strength Check Results Summary (continued) QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 2 of 5 Tuesday 02/09/21 11:05 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW2 Design Forces Factored Loads Wall Weight 43.02 k 52.4 ft 14 . 6 7 f t 12.53 k 43.02 k -12.53 k140.3 ft·k Shear Check Anv bd 2.5 in 621.8 in 10.8 ft² = = = fv V Anv 12.53 k 10.8 ft² 8.06 psi = = = g 0.750 partially grouted shear wall = Fvm 1 2 4.0 1.75 M Vd - f'm 0.25 P An + = 1 2 4.0 1.75 140.3 ft·k 12.53 k 621.8 in - 2000 psi 0.25 43.02 k 17.63 ft² + = 85.22 psi = Fvs 0.5 Av Fs d An s 0.5 0.05 in²32000 psi 621.8 in 17.63 ft²24 in 7.51 psi = = = Fv Fvm Fvs + g 85.22 psi 7.51 psi + 0.750 69.55 psi = = = 3f'm g 3 2000 psi 0.750 100.6 psi = = ...upper limit on Fv from eqn 826 - Limit did not govern fv 8.06 psi  Fv 69.55 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 14.67 ft 2.68 in / 65.5759  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 17.63 ft² 0.65 0 in²32000 psi + 1 14.67 ft 140 2.68 in 2 ^ - = 990.6 k = P 43.02 k  Pa 990.6 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 4.12 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 621.8 in 2 / 310.90 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.01 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 32 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 4.12 in² 33.3 ft² / 0.0009 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 140.3 ft·k 12.53 k 621.8 in 0.2161 < 1.0 = = P 43.02 k < 0.05 f'm An 0.05 2000 psi 17.63 ft² 253.8 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 4000 2800 1600 400 -800 -20000 3750 7500 11250 15000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 43.02 k TENSION controlled (fs = Fs = 32000 psi) k = 0.170 62 8 . 8 i n 10 6 . 8 i n 0.00023 -0.00111 409.6 psi fs = 32000 psi 98.56 k 6.28 k 5.99 k 5.6 k 5.22 k 4.83 k 4.44 k 4.05 k 3.66 k 3.27 k 2.89 k 2.5 k 2.11 k 1.72 k 1.33 k 0.95 k 0.56 k 0.17 k 43.02 k 3015 ft·k P 43.02 k = Mallow 3015 ft·k from interaction diagram given P = M 140.3 ft·k  Mallow 3015 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (1.0 - 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 3 of 5 Tuesday 02/09/21 11:05 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW2 Design Forces Factored Loads Wall Weight 46.15 k 52.4 ft 14 . 6 7 f t 12.53 k 46.15 k -12.53 k140.3 ft·k Shear Check Anv bd 2.5 in 621.8 in 10.8 ft² = = = fv V Anv 12.53 k 10.8 ft² 8.06 psi = = = g 0.750 partially grouted shear wall = Fvm 1 2 4.0 1.75 M Vd - f'm 0.25 P An + = 1 2 4.0 1.75 140.3 ft·k 12.53 k 621.8 in - 2000 psi 0.25 46.15 k 17.63 ft² + = 85.53 psi = Fvs 0.5 Av Fs d An s 0.5 0.05 in²32000 psi 621.8 in 17.63 ft²24 in 7.51 psi = = = Fv Fvm Fvs + g 85.53 psi 7.51 psi + 0.750 69.78 psi = = = 3f'm g 3 2000 psi 0.750 100.6 psi = = ...upper limit on Fv from eqn 826 - Limit did not govern fv 8.06 psi  Fv 69.78 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 14.67 ft 2.68 in / 65.5759  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 17.63 ft² 0.65 0 in²32000 psi + 1 14.67 ft 140 2.68 in 2 ^ - = 990.6 k = P 46.15 k  Pa 990.6 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 4.12 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 621.8 in 2 / 310.90 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.01 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 32 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 4.12 in² 33.3 ft² / 0.0009 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 140.3 ft·k 12.53 k 621.8 in 0.2161 < 1.0 = = P 46.15 k < 0.05 f'm An 0.05 2000 psi 17.63 ft² 253.8 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 4000 2800 1600 400 -800 -20000 3750 7500 11250 15000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 46.15 k TENSION controlled (fs = Fs = 32000 psi) k = 0.172 62 8 . 8 i n 10 8 . 4 i n 0.00023 -0.00111 417 psi fs = 32000 psi 101.7 k 6.28 k 5.99 k 5.6 k 5.21 k 4.82 k 4.43 k 4.04 k 3.65 k 3.27 k 2.88 k 2.49 k 2.1 k 1.71 k 1.32 k 0.93 k 0.54 k 0.15 k 46.15 k 3083 ft·k P 46.15 k = Mallow 3083 ft·k from interaction diagram given P = M 140.3 ft·k  Mallow 3083 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (1.0 + 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 4 of 5 Tuesday 02/09/21 11:05 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW2 Design Forces Factored Loads Wall Weight 25.18 k 52.4 ft 14 . 6 7 f t 12.53 k 25.18 k -12.53 k140.3 ft·k Shear Check Anv bd 2.5 in 621.8 in 10.8 ft² = = = fv V Anv 12.53 k 10.8 ft² 8.06 psi = = = g 0.750 partially grouted shear wall = Fvm 1 2 4.0 1.75 M Vd - f'm 0.25 P An + = 1 2 4.0 1.75 140.3 ft·k 12.53 k 621.8 in - 2000 psi 0.25 25.18 k 17.63 ft² + = 83.47 psi = Fvs 0.5 Av Fs d An s 0.5 0.05 in²32000 psi 621.8 in 17.63 ft²24 in 7.51 psi = = = Fv Fvm Fvs + g 83.47 psi 7.51 psi + 0.750 68.23 psi = = = 3f'm g 3 2000 psi 0.750 100.6 psi = = ...upper limit on Fv from eqn 826 - Limit did not govern fv 8.06 psi  Fv 68.23 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 14.67 ft 2.68 in / 65.5759  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 17.63 ft² 0.65 0 in²32000 psi + 1 14.67 ft 140 2.68 in 2 ^ - = 990.6 k = P 25.18 k  Pa 990.6 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 4.12 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 621.8 in 2 / 310.90 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.01 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 32 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 4.12 in² 33.3 ft² / 0.0009 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 140.3 ft·k 12.53 k 621.8 in 0.2161 < 1.0 = = P 25.18 k < 0.05 f'm An 0.05 2000 psi 17.63 ft² 253.8 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 4000 2800 1600 400 -800 -20000 3750 7500 11250 15000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 25.18 k TENSION controlled (fs = Fs = 32000 psi) k = 0.155 62 8 . 8 i n 97 . 6 1 i n 0.00020 -0.00111 367.8 psi fs = 32000 psi 81.59 k 6.28 k 6 k 5.62 k 5.23 k 4.85 k 4.47 k 4.09 k 3.71 k 3.33 k 2.95 k 2.56 k 2.18 k 1.8 k 1.42 k 1.04 k 0.66 k 0.28 k 25.18 k 2635 ft·k P 25.18 k = Mallow 2635 ft·k from interaction diagram given P = M 140.3 ft·k  Mallow 2635 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (0.6 - 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 5 of 5 Tuesday 02/09/21 11:05 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW3 7. 6 3 i n Distributed Vertical Reinforcement: #4 @ 32 in Horizontal Reinforcement: 8" wall Std Truss-Mesh HB Lox All 120 @ 24 14 ft 16 . 6 7 f t Design Detail Check Summary Ratio Check Provided Required Combination ----- Strength Checks ----- 0.000 Axial Tension 32 k 0 k 1.0D + 1.0S 0.127 Shear 45.04 psi 5.74 psi (0.6 - 0.14Sds)D + 0.7E 0.079 Axial Compression 259.4 k 20.47 k 1.0D + 1.0S 0.135 Axial+Flexure 228.8 ft·k 30.95 ft·k (0.6 - 0.14Sds)D + 0.7E ----- Reinforcement Limits ----- 0.500 Shear Bar Spacing 24 in 48 in 1.0D + 1.0S 0.102 Vert Bar Area 0.01 in²0 in²1.0D + 1.0S 0.333 Vert Bar Spacing 32 in 96 in 1.0D + 1.0S Criteria Use basic criteria from common project s...Yes Building Code TMS 402-13 (MSJC... Strength Combinations ASCE 7-10 (ASD) Apply Sds Factor to Seismic Combinatio... Yes Sds (from ASCE 7) 0.25 Seismic R Value 2.00 f'm 2000 psi fy 60000 psi Specify Wall Weight Manually No Block Weight Normal weight Design As Clay Masonry No Include Wall Self-Weight Yes End Bars Only For Flexural/Axial Analysis No Multiply Seismic Shear By 1.5 No Load Combinations ASCE 7-10 (ASD) 1.0D + 1.0S (1.0 - 0.14Sds)D + 0.7E (1.0 + 0.14Sds)D + 0.7E 1.0D (1.0 - 0.105Sds)D + 0.75S + 0.525E (1.0 + 0.105Sds)D + 0.75S + 0.525E 1.0D + 0.75S (0.6 - 0.14Sds)D + 0.7E (0.6 + 0.14Sds)D + 0.7E 0.6D Interaction Diagram 800 600 400 200 0 -2000 200 400 600 800 1000 Moment (ft·k) Axial Force (k) Interaction Diagram Loads Summary Load Set Source Axial Pt Load Offset from CenterEnd 1 Axial Distr...End 2 Axial Distr...Shear Pt Load Shear Distribute...Shear Offset Fro...Moment Dead 0 k 0 ft 180 lb/ft 180 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Snow 0 k 0 ft 315 lb/ft 315 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Earthquake 0 k 0 ft 0 lb/ft 0 lb/ft 3.3 k 0 lb/ft 0 ft 0 ft·k Load Combination Factored Axial Factored Moment Factored Shear Factored Wall Weight Design Compression Design Tension (k)(ft·k)(k)(k)(k)(k) 1.0D + 1.0S 0 0 0 13.54 20.47 0 (1.0 - 0.14Sds)D + 0.7E 0 0 2.31 13.06 15.49 0 (1.0 + 0.14Sds)D + 0.7E 0 0 2.31 14.01 16.62 0 1.0D 0 0 0 13.54 16.06 0 (1.0 - 0.105Sds)D + 0.75S + 0.525E 0 0 1.73 13.18 18.94 0 (1.0 + 0.105Sds)D + 0.75S + 0.525E 0 0 1.73 13.89 19.79 0 1.0D + 0.75S 0 0 0 13.54 19.36 0 (0.6 - 0.14Sds)D + 0.7E 0 0 2.31 7.65 9.07 0 (0.6 + 0.14Sds)D + 0.7E 0 0 2.31 8.6 10.2 0 0.6D 0 0 0 8.12 9.63 0 Strength Check Results Summary QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 1 of 4 Tuesday 02/09/21 11:09 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW3 Load Combination Design Moment Design Shear Stress Allowable Axial Allowable Moment Allowable Shear Stress (ft·k)(psi)(k)(ft·k)(psi) 1.0D + 1.0S 0 0 259.4 295.7 0 (1.0 - 0.14Sds)D + 0.7E 30.95 5.74 259.4 266.7 46.66 (1.0 + 0.14Sds)D + 0.7E 30.95 5.74 259.4 273.3 46.95 1.0D 0 0 259.4 270 0 (1.0 - 0.105Sds)D + 0.75S + 0.525E 23.22 4.3 259.4 286.9 47.54 (1.0 + 0.105Sds)D + 0.75S + 0.525E 23.22 4.3 259.4 291.8 47.75 1.0D + 0.75S 0 0 259.4 289.5 0 (0.6 - 0.14Sds)D + 0.7E 30.95 5.74 259.4 228.8 45.04 (0.6 + 0.14Sds)D + 0.7E 30.95 5.74 259.4 235.6 45.33 0.6D 0 0 259.4 232.2 0 Strength Check Results Summary (continued) QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 2 of 4 Tuesday 02/09/21 11:09 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW3 Design Forces Factored Loads Wall Weight 13.54 k 14 ft 16 . 6 7 f t -495 lb/ft 20.47 k 0 k0 ft·k Shear Check Anv bd 2.5 in 161 in 2.8 ft² = = = fv V Anv 0 k 2.8 ft² 0 psi = = = There is zero applied shear force in this load case  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 16.67 ft 2.6 in / 76.8862  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 5.16 ft² 0.65 0 in²32000 psi + 1 16.67 ft 140 2.6 in 2 ^ - = 259.4 k = P 20.47 k  Pa 259.4 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 1.18 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 161 in 2 / 80.50 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.01 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 32 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 1.18 in² 8.9 ft² / 0.0009 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 0 ft·k 0 k 161 in INF < 1.0 = = P 20.47 k < 0.05 f'm An 0.05 2000 psi 5.16 ft² 74.29 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1000 700 400 100 -200 -5000 250 500 750 1000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 20.47 k TENSION controlled (fs = Fs = 32000 psi) k = 0.184 16 8 i n 30 . 8 8 i n 0.00026 -0.00114 460.8 psi fs = 32000 psi 36.76 k 6.28 k 4.77 k 3.26 k 1.75 k 0.24 k 20.47 k 295.7 ft·k P 20.47 k = Mallow 295.7 ft·k from interaction diagram given P = M 0 ft·k  Mallow 295.7 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: 1.0D + 1.0S] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 3 of 4 Tuesday 02/09/21 11:09 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW3 Design Forces Factored Loads Wall Weight 7.65 k 14 ft 16 . 6 7 f t -101.67 lb/ft 2.31 k 9.07 k -2.31 k30.95 ft·k Shear Check Anv bd 2.5 in 161 in 2.8 ft² = = = fv V Anv 2.31 k 2.8 ft² 5.74 psi = = = g 0.750 partially grouted shear wall = Fvm 1 2 4.0 1.75 M Vd - f'm 0.25 P An + = 1 2 4.0 1.75 30.95 ft·k 2.31 k 161 in - 2000 psi 0.25 9.07 k 5.16 ft² + = 53.41 psi = Fvs 0.5 Av Fs d An s 0.5 0.05 in²32000 psi 161 in 5.16 ft²24 in 6.65 psi = = = Fv Fvm Fvs + g 53.41 psi 6.65 psi + 0.750 45.04 psi = = = 3f'm g 3 2000 psi 0.750 100.6 psi = = 2f'm g 2 2000 psi 0.750 67.08 psi = = Fv_limit 69 psi = Interpolated limit on F v from eqns 826 - and 827 - Limit did not govern fv 5.74 psi  Fv 45.04 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 16.67 ft 2.6 in / 76.8862  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 5.16 ft² 0.65 0 in²32000 psi + 1 16.67 ft 140 2.6 in 2 ^ - = 259.4 k = P 9.07 k  Pa 259.4 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 1.18 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 161 in 2 / 80.50 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.01 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 32 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 1.18 in² 8.9 ft² / 0.0009 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 30.95 ft·k 2.31 k 161 in 0.9988 < 1.0 = = P 9.07 k < 0.05 f'm An 0.05 2000 psi 5.16 ft² 74.29 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1000 700 400 100 -200 -5000 250 500 750 1000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 9.07 k TENSION controlled (fs = Fs = 32000 psi) k = 0.152 16 8 i n 25 . 6 i n 0.00020 -0.00114 367.4 psi fs = 32000 psi 25.93 k 6.28 k 4.83 k 3.38 k 1.92 k 0.47 k 9.07 k 228.8 ft·k P 9.07 k = Mallow 228.8 ft·k from interaction diagram given P = M 30.95 ft·k  Mallow 228.8 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (0.6 - 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 4 of 4 Tuesday 02/09/21 11:09 PM03/01/2021 03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW4 9. 6 3 i n Distributed Vertical Reinforcement: #4 @ 32 in Horizontal Reinforcement: 8" wall HD Truss-Mesh HB Lox All 120 @ 24 19.33 ft 13 f t Design Detail Check Summary Ratio Check Provided Required Combination ----- Strength Checks ----- 0.000 Axial Tension 32 k 0 k 1.0D + 1.0S 0.149 Shear 58.79 psi 8.76 psi (0.6 - 0.14Sds)D + 0.7E 0.054 Axial Compression 936.8 k 50.31 k 1.0D + 1.0S 0.657 Axial+Flexure 527.8 ft·k 346.8 ft·k (0.6 - 0.14Sds)D + 0.7E ----- Reinforcement Limits ----- 0.500 Shear Bar Spacing 24 in 48 in 1.0D + 1.0S 0.153 Vert Bar Area 0.01 in²0 in²1.0D + 1.0S 0.333 Vert Bar Spacing 32 in 96 in 1.0D + 1.0S Criteria Use basic criteria from common project s...Yes Building Code TMS 402-13 (MSJC... Strength Combinations ASCE 7-10 (ASD) Apply Sds Factor to Seismic Combinatio... Yes Sds (from ASCE 7) 0.25 Seismic R Value 2.00 f'm 2000 psi fy 60000 psi Specify Wall Weight Manually No Block Weight Normal weight Design As Clay Masonry No Include Wall Self-Weight Yes End Bars Only For Flexural/Axial Analysis No Multiply Seismic Shear By 1.5 No Load Combinations ASCE 7-10 (ASD) 1.0D + 1.0S (1.0 - 0.14Sds)D + 0.7E (1.0 + 0.14Sds)D + 0.7E 1.0D (1.0 - 0.105Sds)D + 0.75S + 0.525E (1.0 + 0.105Sds)D + 0.75S + 0.525E 1.0D + 0.75S (0.6 - 0.14Sds)D + 0.7E (0.6 + 0.14Sds)D + 0.7E 0.6D Interaction Diagram 3000 2200 1400 600 -200 -10000 800 1600 2400 3200 4000 Moment (ft·k) Axial Force (k) Interaction Diagram Loads Summary Load Set Source Axial Pt Load Offset from CenterEnd 1 Axial Distr...End 2 Axial Distr...Shear Pt Load Shear Distribute...Shear Offset Fro...Moment Earthquake 0 k 0 ft 0 lb/ft 0 lb/ft 27.1 k 0 lb/ft 0 ft -143.2 ft·k Dead 0 k 0 ft 980.8 lb/ft 980.8 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Snow 0 k 0 ft 270 lb/ft 270 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Load Combination Factored Axial Factored Moment Factored Shear Factored Wall Weight Design Compression Design Tension (k)(ft·k)(k)(k)(k)(k) 1.0D + 1.0S 0 0 0 26.13 50.31 0 (1.0 - 0.14Sds)D + 0.7E 0 -100.24 18.97 25.22 43.51 0 (1.0 + 0.14Sds)D + 0.7E 0 -100.24 18.97 27.05 46.68 0 1.0D 0 0 0 26.13 45.09 0 (1.0 - 0.105Sds)D + 0.75S + 0.525E 0 -75.18 14.23 25.45 47.82 0 (1.0 + 0.105Sds)D + 0.75S + 0.525E 0 -75.18 14.23 26.82 50.2 0 1.0D + 0.75S 0 0 0 26.13 49.01 0 (0.6 - 0.14Sds)D + 0.7E 0 -100.24 18.97 14.76 25.47 0 (0.6 + 0.14Sds)D + 0.7E 0 -100.24 18.97 16.6 28.64 0 0.6D 0 0 0 15.68 27.06 0 Strength Check Results Summary QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 1 of 4 Tuesday 02/09/21 11:14 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW4 Load Combination Design Moment Design Shear Stress Allowable Axial Allowable Moment Allowable Shear Stress (ft·k)(psi)(k)(ft·k)(psi) 1.0D + 1.0S 0 0 936.8 729 0 (1.0 - 0.14Sds)D + 0.7E 346.9 8.76 936.8 674.8 60.81 (1.0 + 0.14Sds)D + 0.7E 346.9 8.76 936.8 700.1 61.16 1.0D 0 0 936.8 686.9 0 (1.0 - 0.105Sds)D + 0.75S + 0.525E 260.1 6.57 936.8 708.7 61.29 (1.0 + 0.105Sds)D + 0.75S + 0.525E 260.1 6.57 936.8 728 61.56 1.0D + 0.75S 0 0 936.8 718.3 0 (0.6 - 0.14Sds)D + 0.7E 346.8 8.76 936.8 527.8 58.79 (0.6 + 0.14Sds)D + 0.7E 346.8 8.76 936.8 554.5 59.14 0.6D 0 0 936.8 541.4 0 Strength Check Results Summary (continued) QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 2 of 4 Tuesday 02/09/21 11:14 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW4 Design Forces Factored Loads Wall Weight 26.13 k 19.33 ft 13 f t -1250.8 lb/ft 50.31 k 0 k0 ft·k Shear Check Anv bd 9.63 in 225.1 in 15.04 ft² = = = fv V Anv 0 k 15.04 ft² 0 psi = = = There is zero applied shear force in this load case  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 13 ft 2.78 in / 56.1454  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 15.5 ft² 0.65 0 in²32000 psi + 1 13 ft 140 2.78 in 2 ^ - = 936.8 k = P 50.31 k  Pa 936.8 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 1.57 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 225.1 in 2 / 112.540 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.01 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 32 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 1.57 in² 15.5 ft² / 0.0007 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 0 ft·k 0 k 225.1 in INF < 1.0 = = P 50.31 k < 0.05 f'm An 0.05 2000 psi 15.5 ft² 223.3 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 4000 2800 1600 400 -800 -20000 1000 2000 3000 4000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 50.31 k TENSION controlled (fs = Fs = 32000 psi) k = 0.163 23 2 i n 37 . 8 8 i n 0.00022 -0.00113 395.8 psi fs = 32000 psi 72.15 k 6.28 k 5.23 k 4.17 k 3.11 k 2.05 k 0.99 k 50.31 k 729 ft·k P 50.31 k = Mallow 729 ft·k from interaction diagram given P = M 0 ft·k  Mallow 729 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: 1.0D + 1.0S] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 3 of 4 Tuesday 02/09/21 11:14 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW4 Design Forces Factored Loads Wall Weight 14.76 k 19.33 ft 13 f t 18.97 k -100.24 ft·k-554.01 lb/ft 25.47 k -18.97 k346.8 ft·k Shear Check Anv bd 9.63 in 225.1 in 15.04 ft² = = = fv V Anv 18.97 k 15.04 ft² 8.76 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 M Vd - f'm 0.25 P An + = 1 2 4.0 1.75 346.8 ft·k 18.97 k 225.1 in - 2000 psi 0.25 25.47 k 15.5 ft² + = 54.15 psi = Fvs 0.5 Av Fs d An s 0.5 0.07 in²32000 psi 225.1 in 15.5 ft²24 in 4.64 psi = = = Fv Fvm Fvs + g 54.15 psi 4.64 psi + 1.0 58.79 psi = = = 3f'm g 3 2000 psi 1.0 134.2 psi = = 2f'm g 2 2000 psi 1.0 89.44 psi = = Fv_limit 92.67 psi = Interpolated limit on F v from eqns 826 - and 827 - Limit did not govern fv 8.76 psi  Fv 58.79 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 13 ft 2.78 in / 56.1454  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 15.5 ft² 0.65 0 in²32000 psi + 1 13 ft 140 2.78 in 2 ^ - = 936.8 k = P 25.47 k  Pa 936.8 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 1.57 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 225.1 in 2 / 112.540 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.01 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 32 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 1.57 in² 15.5 ft² / 0.0007 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 346.8 ft·k 18.97 k 225.1 in 0.9748 < 1.0 = = P 25.47 k < 0.05 f'm An 0.05 2000 psi 15.5 ft² 223.3 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 4000 2800 1600 400 -800 -20000 1000 2000 3000 4000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 25.47 k TENSION controlled (fs = Fs = 32000 psi) k = 0.135 23 2 i n 31 . 3 9 i n 0.00018 -0.00113 317.2 psi fs = 32000 psi 47.93 k 6.28 k 5.26 k 4.24 k 3.21 k 2.19 k 1.17 k 0.15 k 25.47 k 527.8 ft·k P 25.47 k = Mallow 527.8 ft·k from interaction diagram given P = M 346.8 ft·k  Mallow 527.8 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (0.6 - 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 4 of 4 Tuesday 02/09/21 11:14 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW5 9. 6 3 i n Distributed Vertical Reinforcement: #5 @ 8 in Horizontal Reinforcement: 10" wall Std Truss-Mesh HB Lox All 120 @ 2 9.75 ft 28 . 7 f t Design Detail Check Summary Ratio Check Provided Required Combination ----- Strength Checks ----- 0.000 Axial Tension 32 k 0 k 1.0D + 1.0S 0.127 Shear 57.02 psi 7.26 psi (0.6 - 0.14Sds)D + 0.7E 0.177 Axial Compression 179.6 k 31.72 k (1.0 + 0.105Sds)D + 0.75S + 0.525E 0.429 Axial+Flexure 449.1 ft·k 192.5 ft·k (0.6 - 0.14Sds)D + 0.7E ----- Reinforcement Limits ----- 0.500 Shear Bar Spacing 24 in 48 in 1.0D + 1.0S 0.016 Vert Bar Area 0.04 in²0 in²1.0D + 1.0S 0.083 Vert Bar Spacing 8 in 96 in 1.0D + 1.0S Criteria Use basic criteria from common project s...Yes Building Code TMS 402-13 (MSJC... Strength Combinations ASCE 7-10 (ASD) Apply Sds Factor to Seismic Combinatio... Yes Sds (from ASCE 7) 0.25 Seismic R Value 2.00 f'm 2000 psi fy 60000 psi Specify Wall Weight Manually No Block Weight Normal weight Design As Clay Masonry No Include Wall Self-Weight Yes End Bars Only For Flexural/Axial Analysis No Multiply Seismic Shear By 1.5 No Load Combinations ASCE 7-10 (ASD) 1.0D + 1.0S (1.0 - 0.14Sds)D + 0.7E (1.0 + 0.14Sds)D + 0.7E 1.0D (1.0 - 0.105Sds)D + 0.75S + 0.525E (1.0 + 0.105Sds)D + 0.75S + 0.525E 1.0D + 0.75S (0.6 - 0.14Sds)D + 0.7E (0.6 + 0.14Sds)D + 0.7E 0.6D Interaction Diagram 1500 1100 700 300 -100 -5000 200 400 600 800 1000 Moment (ft·k) Axial Force (k) Interaction Diagram Loads Summary Load Set Source Axial Pt Load Offset from CenterEnd 1 Axial Distr...End 2 Axial Distr...Shear Pt Load Shear Distribute...Shear Offset Fro...Moment Earthquake 0 k 0 ft 0 lb/ft 0 lb/ft 11 k 0 lb/ft 0 ft 0 ft·k Dead 1 k 0 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Snow 1.1 k 0 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Load Combination Factored Axial Factored Moment Factored Shear Factored Wall Weight Design Compression Design Tension (k)(ft·k)(k)(k)(k)(k) 1.0D + 1.0S 2.1 0 0 29.1 31.2 0 (1.0 - 0.14Sds)D + 0.7E 0.96 0 7.7 28.08 29.04 0 (1.0 + 0.14Sds)D + 0.7E 1.04 0 7.7 30.12 31.16 0 1.0D 1 0 0 29.1 30.1 0 (1.0 - 0.105Sds)D + 0.75S + 0.525E 1.8 0 5.78 28.33 30.13 0 (1.0 + 0.105Sds)D + 0.75S + 0.525E 1.85 0 5.78 29.87 31.72 0 1.0D + 0.75S 1.83 0 0 29.1 30.93 0 (0.6 - 0.14Sds)D + 0.7E 0.56 0 7.7 16.44 17 0 (0.6 + 0.14Sds)D + 0.7E 0.64 0 7.7 18.48 19.12 0 0.6D 0.6 0 0 17.46 18.06 0 Strength Check Results Summary QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 1 of 5 Tuesday 02/09/21 11:19 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW5 Load Combination Design Moment Design Shear Stress Allowable Axial Allowable Moment Allowable Shear Stress (ft·k)(psi)(k)(ft·k)(psi) 1.0D + 1.0S 0 0 179.6 498.8 0 (1.0 - 0.14Sds)D + 0.7E 192.5 7.26 179.6 491.3 59.69 (1.0 + 0.14Sds)D + 0.7E 192.5 7.26 179.6 498.4 60.16 1.0D 0 0 179.6 495.2 0 (1.0 - 0.105Sds)D + 0.75S + 0.525E 144.4 5.45 179.6 495.3 59.93 (1.0 + 0.105Sds)D + 0.75S + 0.525E 144.4 5.45 179.6 500.4 60.29 1.0D + 0.75S 0 0 179.6 497.7 0 (0.6 - 0.14Sds)D + 0.7E 192.5 7.26 179.6 449.1 57.02 (0.6 + 0.14Sds)D + 0.7E 192.5 7.26 179.6 456.4 57.49 0.6D 0 0 179.6 452.7 0 Strength Check Results Summary (continued) QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 2 of 5 Tuesday 02/09/21 11:19 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW5 Design Forces Factored Loads Wall Weight 29.1 k 9.75 ft 28 . 7 f t 2.1 k 31.2 k 0 k 0 ft·k Shear Check Anv bd 9.63 in 110.1 in 7.36 ft² = = = fv V Anv 0 k 7.36 ft² 0 psi = = = There is zero applied shear force in this load case  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 28.7 ft 2.78 in / 123.9519 > 99 = = Pa 0.25 f'm An 0.65 Ast Fs + 70 r h 2 ^ = 0.25 2000 psi 7.82 ft² 0.65 0 in²32000 psi + 70 2.78 in 28.7 ft 2 ^ = 179.6 k = P 31.2 k  Pa 179.6 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 4.3 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 110.1 in 2 / 55.060 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 4.3 in² 7.82 ft² / 0.0038 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 0 ft·k 0 k 110.1 in INF < 1.0 = = P 31.2 k < 0.05 f'm An 0.05 2000 psi 7.82 ft² 112.6 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 250 500 750 1000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 31.2 k TENSION controlled (fs = Fs = 32000 psi) k = 0.240 11 7 i n 28 . 0 3 i n 0.00036 -0.00116 655.1 psi fs = 32000 psi 88.37 k 9.82 k 8.89 k 7.97 k 7.04 k 6.12 k 5.2 k 4.27 k 3.35 k 2.42 k 1.5 k 0.57 k 31.2 k 498.8 ft·k P 31.2 k = Mallow 498.8 ft·k from interaction diagram given P = M 0 ft·k  Mallow 498.8 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: 1.0D + 1.0S] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 3 of 5 Tuesday 02/09/21 11:19 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW5 Design Forces Factored Loads Wall Weight 29.87 k 9.75 ft 28 . 7 f t 5.78 k 1.85 k 31.72 k -5.78 k144.4 ft·k Shear Check Anv bd 9.63 in 110.1 in 7.36 ft² = = = fv V Anv 5.78 k 7.36 ft² 5.45 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 1.0 - f'm 0.25 P An + = 1 2 4.0 1.75 1.0 - 2000 psi 0.25 31.72 k 7.82 ft² + = 57.35 psi = with term M Vd limited to 1.0 / Fvs 0.5 Av Fs d An s 0.5 0.04 in²32000 psi 110.1 in 7.82 ft²24 in 2.93 psi = = = Fv Fvm Fvs + g 57.35 psi 2.93 psi + 1.0 60.29 psi = = = 2f'm g 2 2000 psi 1.0 89.44 psi = = ...upper limit on Fv from eqn 827 - Limit did not govern fv 5.45 psi  Fv 60.29 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 28.7 ft 2.78 in / 123.9519 > 99 = = Pa 0.25 f'm An 0.65 Ast Fs + 70 r h 2 ^ = 0.25 2000 psi 7.82 ft² 0.65 0 in²32000 psi + 70 2.78 in 28.7 ft 2 ^ = 179.6 k = P 31.72 k  Pa 179.6 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 4.3 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 110.1 in 2 / 55.060 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 4.3 in² 7.82 ft² / 0.0038 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 144.4 ft·k 5.78 k 110.1 in 2.7243  1.0 = = P 31.72 k < 0.05 f'm An 0.05 2000 psi 7.82 ft² 112.6 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 250 500 750 1000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 31.72 k TENSION controlled (fs = Fs = 32000 psi) k = 0.240 11 7 i n 28 . 0 8 i n 0.00036 -0.00116 656.9 psi fs = 32000 psi 88.79 k 9.82 k 8.89 k 7.97 k 7.04 k 6.12 k 5.19 k 4.27 k 3.34 k 2.42 k 1.49 k 0.57 k 31.72 k 500.4 ft·k P 31.72 k = Mallow 500.4 ft·k from interaction diagram given P = M 144.4 ft·k  Mallow 500.4 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (1.0 + 0.105Sds)D + 0.75S + 0.525E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 4 of 5 Tuesday 02/09/21 11:19 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW5 Design Forces Factored Loads Wall Weight 16.44 k 9.75 ft 28 . 7 f t 7.7 k 0.56 k 17 k -7.7 k192.5 ft·k Shear Check Anv bd 9.63 in 110.1 in 7.36 ft² = = = fv V Anv 7.7 k 7.36 ft² 7.26 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 1.0 - f'm 0.25 P An + = 1 2 4.0 1.75 1.0 - 2000 psi 0.25 17 k 7.82 ft² + = 54.09 psi = with term M Vd limited to 1.0 / Fvs 0.5 Av Fs d An s 0.5 0.04 in²32000 psi 110.1 in 7.82 ft²24 in 2.93 psi = = = Fv Fvm Fvs + g 54.09 psi 2.93 psi + 1.0 57.02 psi = = = 2f'm g 2 2000 psi 1.0 89.44 psi = = ...upper limit on Fv from eqn 827 - Limit did not govern fv 7.26 psi  Fv 57.02 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 28.7 ft 2.78 in / 123.9519 > 99 = = Pa 0.25 f'm An 0.65 Ast Fs + 70 r h 2 ^ = 0.25 2000 psi 7.82 ft² 0.65 0 in²32000 psi + 70 2.78 in 28.7 ft 2 ^ = 179.6 k = P 17 k  Pa 179.6 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 4.3 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 110.1 in 2 / 55.060 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 4.3 in² 7.82 ft² / 0.0038 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 192.5 ft·k 7.7 k 110.1 in 2.7243  1.0 = = P 17 k < 0.05 f'm An 0.05 2000 psi 7.82 ft² 112.6 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 250 500 750 1000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 17 k TENSION controlled (fs = Fs = 32000 psi) k = 0.224 11 7 i n 26 . 1 6 i n 0.00033 -0.00115 598.2 psi fs = 32000 psi 75.3 k 9.82 k 8.91 k 8.01 k 7.1 k 6.2 k 5.3 k 4.39 k 3.49 k 2.58 k 1.68 k 0.77 k 17 k 449.1 ft·k P 17 k = Mallow 449.1 ft·k from interaction diagram given P = M 192.5 ft·k  Mallow 449.1 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (0.6 - 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 5 of 5 Tuesday 02/09/21 11:19 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW6 9. 6 3 i n Distributed Vertical Reinforcement: #5 @ 8 in Horizontal Reinforcement: 10" wall Std Truss-Mesh HB Lox All 120 @ 2 6.33 ft 13 f t Design Detail Check Summary Ratio Check Provided Required Combination ----- Strength Checks ----- 0.000 Axial Tension 32 k 0 k 1.0D + 1.0S 0.165 Shear 56.84 psi 9.37 psi (0.6 - 0.14Sds)D + 0.7E 0.068 Axial Compression 306.8 k 20.9 k (1.0 + 0.105Sds)D + 0.75S + 0.525E 0.740 Axial+Flexure 192.5 ft·k 142.4 ft·k (0.6 - 0.14Sds)D + 0.7E ----- Reinforcement Limits ----- 0.695 Shear Bar Spacing 24 in 34.54 in 1.0D + 1.0S 0.016 Vert Bar Area 0.04 in²0 in²1.0D + 1.0S 0.083 Vert Bar Spacing 8 in 96 in 1.0D + 1.0S Criteria Use basic criteria from common project s...Yes Building Code TMS 402-13 (MSJC... Strength Combinations ASCE 7-10 (ASD) Apply Sds Factor to Seismic Combinatio... Yes Sds (from ASCE 7) 0.25 Seismic R Value 2.00 f'm 2000 psi fy 60000 psi Specify Wall Weight Manually No Block Weight Normal weight Design As Clay Masonry No Include Wall Self-Weight Yes End Bars Only For Flexural/Axial Analysis No Multiply Seismic Shear By 1.5 No Load Combinations ASCE 7-10 (ASD) 1.0D + 1.0S (1.0 - 0.14Sds)D + 0.7E (1.0 + 0.14Sds)D + 0.7E 1.0D (1.0 - 0.105Sds)D + 0.75S + 0.525E (1.0 + 0.105Sds)D + 0.75S + 0.525E 1.0D + 0.75S (0.6 - 0.14Sds)D + 0.7E (0.6 + 0.14Sds)D + 0.7E 0.6D Interaction Diagram 800 600 400 200 0 -2000 80 160 240 320 400 Moment (ft·k) Axial Force (k) Interaction Diagram Loads Summary Load Set Source Axial Pt Load Offset from CenterEnd 1 Axial Distr...End 2 Axial Distr...Shear Pt Load Shear Distribute...Shear Offset Fro...Moment Earthquake 0 k 0 ft 0 lb/ft 0 lb/ft 8.9 k 0 lb/ft 0 ft -87.74 ft·k Dead 0 k 0 ft 1668 lb/ft 1668 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Snow 0 k 0 ft 270 lb/ft 270 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Load Combination Factored Axial Factored Moment Factored Shear Factored Wall Weight Design Compression Design Tension (k)(ft·k)(k)(k)(k)(k) 1.0D + 1.0S 0 0 0 8.56 20.83 0 (1.0 - 0.14Sds)D + 0.7E 0 -61.42 6.23 8.26 18.44 0 (1.0 + 0.14Sds)D + 0.7E 0 -61.42 6.23 8.86 19.79 0 1.0D 0 0 0 8.56 19.12 0 (1.0 - 0.105Sds)D + 0.75S + 0.525E 0 -46.06 4.67 8.33 19.89 0 (1.0 + 0.105Sds)D + 0.75S + 0.525E 0 -46.06 4.67 8.78 20.9 0 1.0D + 0.75S 0 0 0 8.56 20.4 0 (0.6 - 0.14Sds)D + 0.7E 0 -61.42 6.23 4.83 10.8 0 (0.6 + 0.14Sds)D + 0.7E 0 -61.42 6.23 5.44 12.14 0 0.6D 0 0 0 5.13 11.47 0 Strength Check Results Summary QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 1 of 5 Tuesday 02/09/21 11:22 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW6 Load Combination Design Moment Design Shear Stress Allowable Axial Allowable Moment Allowable Shear Stress (ft·k)(psi)(k)(ft·k)(psi) 1.0D + 1.0S 0 0 306.8 215.5 0 (1.0 - 0.14Sds)D + 0.7E 142.4 9.37 306.8 210 59.45 (1.0 + 0.14Sds)D + 0.7E 142.4 9.37 306.8 213.1 59.91 1.0D 0 0 306.8 211.6 0 (1.0 - 0.105Sds)D + 0.75S + 0.525E 106.8 7.03 306.8 213.4 59.95 (1.0 + 0.105Sds)D + 0.75S + 0.525E 106.8 7.03 306.8 215.8 60.29 1.0D + 0.75S 0 0 306.8 214.4 0 (0.6 - 0.14Sds)D + 0.7E 142.4 9.37 306.8 192.5 56.84 (0.6 + 0.14Sds)D + 0.7E 142.4 9.37 306.8 195.7 57.3 0.6D 0 0 306.8 194 0 Strength Check Results Summary (continued) QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 2 of 5 Tuesday 02/09/21 11:22 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW6 Design Forces Factored Loads Wall Weight 8.56 k 6.33 ft 13 f t -1938 lb/ft 20.83 k 0 k 0 ft·k Shear Check Anv bd 9.63 in 69.08 in 4.62 ft² = = = fv V Anv 0 k 4.62 ft² 0 psi = = = There is zero applied shear force in this load case  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 13 ft 2.78 in / 56.1454  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 5.08 ft² 0.65 0 in²32000 psi + 1 13 ft 140 2.78 in 2 ^ - = 306.8 k = P 20.83 k  Pa 306.8 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 2.76 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 69.08 in 2 / 34.540  48 = = sreqd 34.54 in = s 24 in  sreqd 34.54 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 2.76 in² 5.08 ft² / 0.0038 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 0 ft·k 0 k 69.08 in INF < 1.0 = = P 20.83 k < 0.05 f'm An 0.05 2000 psi 5.08 ft² 73.11 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1000 700 400 100 -200 -5000 100 200 300 400 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 20.83 k TENSION controlled (fs = Fs = 32000 psi) k = 0.240 75 . 9 6 i n 18 . 2 i n 0.00037 -0.00119 672.3 psi fs = 32000 psi 58.88 k 9.82 k 8.36 k 6.9 k 5.43 k 3.97 k 2.51 k 1.05 k 20.83 k 215.5 ft·k P 20.83 k = Mallow 215.5 ft·k from interaction diagram given P = M 0 ft·k  Mallow 215.5 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: 1.0D + 1.0S] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 3 of 5 Tuesday 02/09/21 11:22 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW6 Design Forces Factored Loads Wall Weight 8.78 k 6.33 ft 13 f t 4.67 k -46.06 ft·k-1914.46 lb/ft 20.9 k -4.67 k106.8 ft·k Shear Check Anv bd 9.63 in 69.08 in 4.62 ft² = = = fv V Anv 4.67 k 4.62 ft² 7.03 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 1.0 - f'm 0.25 P An + = 1 2 4.0 1.75 1.0 - 2000 psi 0.25 20.9 k 5.08 ft² + = 57.46 psi = with term M Vd limited to 1.0 / Fvs 0.5 Av Fs d An s 0.5 0.04 in²32000 psi 69.08 in 5.08 ft²24 in 2.83 psi = = = Fv Fvm Fvs + g 57.46 psi 2.83 psi + 1.0 60.29 psi = = = 2f'm g 2 2000 psi 1.0 89.44 psi = = ...upper limit on Fv from eqn 827 - Limit did not govern fv 7.03 psi  Fv 60.29 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 13 ft 2.78 in / 56.1454  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 5.08 ft² 0.65 0 in²32000 psi + 1 13 ft 140 2.78 in 2 ^ - = 306.8 k = P 20.9 k  Pa 306.8 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 2.76 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 69.08 in 2 / 34.540  48 = = sreqd 34.54 in = s 24 in  sreqd 34.54 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 2.76 in² 5.08 ft² / 0.0038 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 106.8 ft·k 4.67 k 69.08 in 3.9708  1.0 = = P 20.9 k < 0.05 f'm An 0.05 2000 psi 5.08 ft² 73.11 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1000 700 400 100 -200 -5000 100 200 300 400 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 20.9 k TENSION controlled (fs = Fs = 32000 psi) k = 0.240 75 . 9 6 i n 18 . 2 1 i n 0.00037 -0.00119 673 psi fs = 32000 psi 58.99 k 9.82 k 8.36 k 6.89 k 5.43 k 3.97 k 2.51 k 1.05 k 20.9 k 215.8 ft·k P 20.9 k = Mallow 215.8 ft·k from interaction diagram given P = M 106.8 ft·k  Mallow 215.8 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (1.0 + 0.105Sds)D + 0.75S + 0.525E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 4 of 5 Tuesday 02/09/21 11:22 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW6 Design Forces Factored Loads Wall Weight 4.83 k 6.33 ft 13 f t 6.23 k -61.42 ft·k-942.19 lb/ft 10.8 k -6.23 k142.4 ft·k Shear Check Anv bd 9.63 in 69.08 in 4.62 ft² = = = fv V Anv 6.23 k 4.62 ft² 9.37 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 1.0 - f'm 0.25 P An + = 1 2 4.0 1.75 1.0 - 2000 psi 0.25 10.8 k 5.08 ft² + = 54 psi = with term M Vd limited to 1.0 / Fvs 0.5 Av Fs d An s 0.5 0.04 in²32000 psi 69.08 in 5.08 ft²24 in 2.83 psi = = = Fv Fvm Fvs + g 54 psi 2.83 psi + 1.0 56.84 psi = = = 2f'm g 2 2000 psi 1.0 89.44 psi = = ...upper limit on Fv from eqn 827 - Limit did not govern fv 9.37 psi  Fv 56.84 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 13 ft 2.78 in / 56.1454  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 5.08 ft² 0.65 0 in²32000 psi + 1 13 ft 140 2.78 in 2 ^ - = 306.8 k = P 10.8 k  Pa 306.8 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 2.76 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 69.08 in 2 / 34.540  48 = = sreqd 34.54 in = s 24 in  sreqd 34.54 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 2.76 in² 5.08 ft² / 0.0038 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 142.4 ft·k 6.23 k 69.08 in 3.9708  1.0 = = P 10.8 k < 0.05 f'm An 0.05 2000 psi 5.08 ft² 73.11 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1000 700 400 100 -200 -5000 100 200 300 400 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 10.8 k TENSION controlled (fs = Fs = 32000 psi) k = 0.222 75 . 9 6 i n 16 . 9 i n 0.00034 -0.00118 609.6 psi fs = 32000 psi 49.58 k 9.82 k 8.39 k 6.96 k 5.54 k 4.11 k 2.69 k 1.26 k 10.8 k 192.5 ft·k P 10.8 k = Mallow 192.5 ft·k from interaction diagram given P = M 142.4 ft·k  Mallow 192.5 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (0.6 - 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 5 of 5 Tuesday 02/09/21 11:22 PM03/01/2021 03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW7 9. 6 3 i n Distributed Vertical Reinforcement: #5 @ 8 in Horizontal Reinforcement: 10" wall Std Truss-Mesh HB Lox All 120 @ 2 14.67 ft 13 f t Design Detail Check Summary Ratio Check Provided Required Combination ----- Strength Checks ----- 0.000 Axial Tension 32 k 0 k 1.0D + 1.0L 0.056 Shear 60.2 psi 3.35 psi (1.0 - 0.14Sds)D + 0.7E 0.111 Axial Compression 710.9 k 78.66 k (1.0 + 0.105Sds)D + 0.75L + 0.75S ... 0.196 Axial+Flexure 1280 ft·k 251.4 ft·k (1.0 + 0.105Sds)D + 0.75L + 0.75S ... ----- Reinforcement Limits ----- 0.500 Shear Bar Spacing 24 in 48 in 1.0D + 1.0L 0.016 Vert Bar Area 0.04 in²0 in²1.0D + 1.0L 0.083 Vert Bar Spacing 8 in 96 in 1.0D + 1.0L Criteria Use basic criteria from common project s...Yes Building Code TMS 402-13 (MSJC... Strength Combinations ASCE 7-10 (ASD) Apply Sds Factor to Seismic Combinatio... Yes Sds (from ASCE 7) 0.25 Seismic R Value 2.00 f'm 2000 psi fy 60000 psi Specify Wall Weight Manually No Block Weight Normal weight Design As Clay Masonry No Include Wall Self-Weight Yes End Bars Only For Flexural/Axial Analysis No Multiply Seismic Shear By 1.5 No Load Combinations ASCE 7-10 (ASD) 1.0D + 1.0L 1.0D + 1.0S (1.0 - 0.14Sds)D + 0.7E (1.0 + 0.14Sds)D + 0.7E 1.0D 1.0D + 0.75L (1.0 - 0.105Sds)D + 0.75L + 0.75S +... (1.0 + 0.105Sds)D + 0.75L + 0.75S ... 1.0D + 0.75L + 0.75S (0.6 - 0.14Sds)D + 0.7E (0.6 + 0.14Sds)D + 0.7E 0.6D Interaction Diagram 2000 1500 1000 500 0 -5000 600 1200 1800 2400 3000 Moment (ft·k) Axial Force (k) Interaction Diagram Loads Summary Load Set Source Axial Pt Load Offset from CenterEnd 1 Axial Distr...End 2 Axial Distr...Shear Pt Load Shear Distribute...Shear Offset Fro...Moment Earthquake 0 k 0 ft 0 lb/ft 0 lb/ft 7.8 k 0 lb/ft 0 ft 0 ft·k Dead 9.7 k -6.84 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Dead 5 k 6.84 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Live 23.9 k -6.44 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Live 4.7 k 6.84 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Snow 10 k -5.84 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Dead 13.9 k -5.84 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 1 of 5 Tuesday 02/09/21 11:31 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW7 Load Combination Factored Axial Factored Moment Factored Shear Factored Wall Weight Design Compression Design Tension (k)(ft·k)(k)(k)(k)(k) 1.0D + 1.0L 57.2 0 0 19.83 77.03 0 1.0D + 1.0S 38.6 0 0 19.83 58.43 0 (1.0 - 0.14Sds)D + 0.7E 27.59 0 5.46 19.14 46.73 0 (1.0 + 0.14Sds)D + 0.7E 29.61 0 5.46 20.53 50.14 0 1.0D 28.6 0 0 19.83 48.43 0 1.0D + 0.75L 50.05 0 0 19.83 69.88 0 (1.0 - 0.105Sds)D + 0.75L + 0.75S + ...56.8 0 4.09 19.31 76.11 0 (1.0 + 0.105Sds)D + 0.75L + 0.75S +...58.3 0 4.09 20.36 78.66 0 1.0D + 0.75L + 0.75S 57.55 0 0 19.83 77.38 0 (0.6 - 0.14Sds)D + 0.7E 16.15 0 5.46 11.2 27.36 0 (0.6 + 0.14Sds)D + 0.7E 18.17 0 5.46 12.6 30.76 0 0.6D 17.16 0 0 11.9 29.06 0 Load Combination Design Moment Design Shear Stress Allowable Axial Allowable Moment Allowable Shear Stress (ft·k)(psi)(k)(ft·k)(psi) 1.0D + 1.0L 235.1 0 710.9 1272 0 1.0D + 1.0S 171.7 0 710.9 1176 0 (1.0 - 0.14Sds)D + 0.7E 109.3 3.35 710.9 1115 60.2 (1.0 + 0.14Sds)D + 0.7E 117.3 3.35 710.9 1132 60.7 1.0D 113.3 0 710.9 1124 0 1.0D + 0.75L 204.7 0 710.9 1235 0 (1.0 - 0.105Sds)D + 0.75L + 0.75S + ...245.5 2.52 710.9 1267 64.54 (1.0 + 0.105Sds)D + 0.75L + 0.75S +...251.4 2.52 710.9 1280 64.91 1.0D + 0.75L + 0.75S 248.4 0 710.9 1274 0 (0.6 - 0.14Sds)D + 0.7E 64.01 3.35 710.9 1013 63.93 (0.6 + 0.14Sds)D + 0.7E 71.98 3.35 710.9 1031 60.38 0.6D 67.99 0 710.9 1022 0 Strength Check Results Summary QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 2 of 5 Tuesday 02/09/21 11:31 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW7 Design Forces Factored Loads Wall Weight 19.83 k 14.67 ft 13 f t 9.7 k 9.7 k23.9 k13.9 k 77.03 k 0 k235.1 ft·k Shear Check Anv bd 9.63 in 169.2 in 11.31 ft² = = = fv V Anv 0 k 11.31 ft² 0 psi = = = There is zero applied shear force in this load case  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 13 ft 2.78 in / 56.1454  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 11.77 ft² 0.65 0 in²32000 psi + 1 13 ft 140 2.78 in 2 ^ - = 710.9 k = P 77.03 k  Pa 710.9 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 6.75 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 169.2 in 2 / 84.580 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 6.75 in² 11.77 ft² / 0.0040 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 235.1 ft·k 0 k 169.2 in INF  1.0 = = P 77.03 k < 0.05 f'm An 0.05 2000 psi 11.77 ft² 169.4 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 2000 1500 1000 500 0 -5000 750 1500 2250 3000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 77.03 k TENSION controlled (fs = Fs = 32000 psi) k = 0.261 17 6 i n 45 . 8 8 i n 0.00040 -0.00114 722.2 psi fs = 32000 psi 159.5 k 9.82 k 9.19 k 8.57 k 7.95 k 7.33 k 6.7 k 6.08 k 5.46 k 4.84 k 4.21 k 3.59 k 2.97 k 2.35 k 1.72 k 1.1 k 0.48 k 77.03 k 1272 ft·k P 77.03 k = Mallow 1272 ft·k from interaction diagram given P = M 235.1 ft·k  Mallow 1272 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: 1.0D + 1.0L] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 3 of 5 Tuesday 02/09/21 11:31 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW7 Design Forces Factored Loads Wall Weight 19.14 k 14.67 ft 13 f t 5.46 k 9.36 k 4.82 k13.41 k 46.73 k -5.46 k109.3 ft·k Shear Check Anv bd 9.63 in 169.2 in 11.31 ft² = = = fv V Anv 5.46 k 11.31 ft² 3.35 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 1.0 - f'm 0.25 P An + = 1 2 4.0 1.75 1.0 - 2000 psi 0.25 46.73 k 11.77 ft² + = 57.21 psi = with term M Vd limited to 1.0 / Fvs 0.5 Av Fs d An s 0.5 0.04 in²32000 psi 169.2 in 11.77 ft²24 in 3 psi = = = Fv Fvm Fvs + g 57.21 psi 3 psi + 1.0 60.2 psi = = = 2f'm g 2 2000 psi 1.0 89.44 psi = = ...upper limit on Fv from eqn 827 - Limit did not govern fv 3.35 psi  Fv 60.2 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 13 ft 2.78 in / 56.1454  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 11.77 ft² 0.65 0 in²32000 psi + 1 13 ft 140 2.78 in 2 ^ - = 710.9 k = P 46.73 k  Pa 710.9 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 6.75 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 169.2 in 2 / 84.580 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 6.75 in² 11.77 ft² / 0.0040 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 109.3 ft·k 5.46 k 169.2 in 1.4206  1.0 = = P 46.73 k < 0.05 f'm An 0.05 2000 psi 11.77 ft² 169.4 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 2000 1500 1000 500 0 -5000 750 1500 2250 3000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 46.73 k TENSION controlled (fs = Fs = 32000 psi) k = 0.240 17 6 i n 42 . 2 2 i n 0.00036 -0.00114 646 psi fs = 32000 psi 131.3 k 9.82 k 9.21 k 8.61 k 8 k 7.4 k 6.79 k 6.19 k 5.58 k 4.98 k 4.37 k 3.77 k 3.16 k 2.56 k 1.95 k 1.35 k 0.74 k 0.14 k 46.73 k 1115 ft·k P 46.73 k = Mallow 1115 ft·k from interaction diagram given P = M 109.3 ft·k  Mallow 1115 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (1.0 - 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 4 of 5 Tuesday 02/09/21 11:31 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW7 Design Forces Factored Loads Wall Weight 20.36 k 14.67 ft 13 f t 4.09 k 9.96 k 8.66 k17.93 k21.77 k 78.66 k -4.1 k251.4 ft·k Shear Check Anv bd 9.63 in 169.2 in 11.31 ft² = = = fv V Anv 4.1 k 11.31 ft² 2.52 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 1.0 - f'm 0.25 P An + = 1 2 4.0 1.75 1.0 - 2000 psi 0.25 78.66 k 11.77 ft² + = 61.92 psi = with term M Vd limited to 1.0 / Fvs 0.5 Av Fs d An s 0.5 0.04 in²32000 psi 169.2 in 11.77 ft²24 in 3 psi = = = Fv Fvm Fvs + g 61.92 psi 3 psi + 1.0 64.91 psi = = = 2f'm g 2 2000 psi 1.0 89.44 psi = = ...upper limit on Fv from eqn 827 - Limit did not govern fv 2.52 psi  Fv 64.91 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 13 ft 2.78 in / 56.1454  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 11.77 ft² 0.65 0 in²32000 psi + 1 13 ft 140 2.78 in 2 ^ - = 710.9 k = P 78.66 k  Pa 710.9 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 6.75 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 169.2 in 2 / 84.580 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 6.75 in² 11.77 ft² / 0.0040 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 251.4 ft·k 4.1 k 169.2 in 4.3557  1.0 = = P 78.66 k < 0.05 f'm An 0.05 2000 psi 11.77 ft² 169.4 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 2000 1500 1000 500 0 -5000 750 1500 2250 3000 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 78.66 k TENSION controlled (fs = Fs = 32000 psi) k = 0.262 17 6 i n 46 . 0 5 i n 0.00040 -0.00114 725.9 psi fs = 32000 psi 160.9 k 9.82 k 9.19 k 8.57 k 7.95 k 7.32 k 6.7 k 6.08 k 5.45 k 4.83 k 4.21 k 3.58 k 2.96 k 2.34 k 1.71 k 1.09 k 0.47 k 78.66 k 1280 ft·k P 78.66 k = Mallow 1280 ft·k from interaction diagram given P = M 251.4 ft·k  Mallow 1280 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (1.0 + 0.105Sds)D + 0.75L + 0.75S + 0.525E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 5 of 5 Tuesday 02/09/21 11:31 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW8 9. 6 3 i n Distributed Vertical Reinforcement: #5 @ 8 in Horizontal Reinforcement: 12" wall Std Truss-Mesh HB Lox All 120 @ 2 12 ft 11 . 2 f t Design Detail Check Summary Ratio Check Provided Required Combination ----- Strength Checks ----- 0.000 Axial Tension 32 k 0 k 1.0D + 1.0L 0.128 Shear 56.58 psi 7.27 psi (0.6 - 0.14Sds)D + 0.7E 0.071 Axial Compression 610.3 k 43.25 k (1.0 + 0.105Sds)D + 0.75L + 0.75S ... 0.295 Axial+Flexure 735.7 ft·k 216.9 ft·k (1.0 + 0.14Sds)D + 0.7E ----- Reinforcement Limits ----- 0.500 Shear Bar Spacing 24 in 48 in 1.0D + 1.0L 0.015 Vert Bar Area 0.04 in²0 in²1.0D + 1.0L 0.083 Vert Bar Spacing 8 in 96 in 1.0D + 1.0L Criteria Use basic criteria from common project s...Yes Building Code TMS 402-13 (MSJC... Strength Combinations ASCE 7-10 (ASD) Apply Sds Factor to Seismic Combinatio... Yes Sds (from ASCE 7)0.25 Seismic R Value 2.00 f'm 2000 psi fy 60000 psi Specify Wall Weight Manually No Block Weight Normal weight Design As Clay Masonry No Include Wall Self-Weight Yes End Bars Only For Flexural/Axial Analysis No Multiply Seismic Shear By 1.5 No Load Combinations ASCE 7-10 (ASD) 1.0D + 1.0L 1.0D + 1.0S (1.0 - 0.14Sds)D + 0.7E (1.0 + 0.14Sds)D + 0.7E 1.0D 1.0D + 0.75L (1.0 - 0.105Sds)D + 0.75L + 0.75S +... (1.0 + 0.105Sds)D + 0.75L + 0.75S ... 1.0D + 0.75L + 0.75S (0.6 - 0.14Sds)D + 0.7E (0.6 + 0.14Sds)D + 0.7E 0.6D Interaction Diagram 1500 1100 700 300 -100 -5000 300 600 900 1200 1500 Moment (ft·k) Axial Force (k) Interaction Diagram Loads Summary Load Set Source Axial Pt Load Offset from CenterEnd 1 Axial Distr...End 2 Axial Distr...Shear Pt Load Shear Distribute...Shear Offset Fro...Moment Earthquake 0 k 0 ft 0 lb/ft 0 lb/ft 13.7 k 0 lb/ft 0 ft -80 ft·k Dead 0 k 0 ft 863 lb/ft 863 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Dead 9.4 k 5.5 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Live 3.3 k 5.5 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Snow 8.2 k 5.5 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Load Combination Factored Axial Factored Moment Factored Shear Factored Wall Weight Design Compression Design Tension (k)(ft·k)(k)(k)(k)(k) 1.0D + 1.0L 12.7 0 0 13.98 37.03 0 1.0D + 1.0S 17.6 0 0 13.98 41.93 0 (1.0 - 0.14Sds)D + 0.7E 9.07 -56 9.59 13.49 32.55 0 (1.0 + 0.14Sds)D + 0.7E 9.73 -56 9.59 14.47 34.92 0 1.0D 9.4 0 0 13.98 33.73 0 1.0D + 0.75L 11.88 0 0 13.98 36.21 0 (1.0 - 0.105Sds)D + 0.75L + 0.75S + ...17.78 -42 7.19 13.61 41.47 0 (1.0 + 0.105Sds)D + 0.75L + 0.75S +...18.27 -42 7.19 14.35 43.25 0 1.0D + 0.75L + 0.75S 18.03 0 0 13.98 42.36 0 (0.6 - 0.14Sds)D + 0.7E 5.31 -56 9.59 7.9 19.05 0 (0.6 + 0.14Sds)D + 0.7E 5.97 -56 9.59 8.88 21.43 0 0.6D 5.64 0 0 8.39 20.24 0 Strength Check Results Summary QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 1 of 6 Tuesday 02/09/21 11:38 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW8 Load Combination Design Moment Design Shear Stress Allowable Axial Allowable Moment Allowable Shear Stress (ft·k)(psi)(k)(ft·k)(psi) 1.0D + 1.0L 69.85 0 610.3 744.8 0 1.0D + 1.0S 96.8 0 610.3 766.2 0 (1.0 - 0.14Sds)D + 0.7E 213.3 7.27 610.3 725.8 59.02 (1.0 + 0.14Sds)D + 0.7E 216.9 7.27 610.3 735.7 59.45 1.0D 51.7 0 610.3 730.5 0 1.0D + 0.75L 65.31 0 610.3 741.4 0 (1.0 - 0.105Sds)D + 0.75L + 0.75S + ...220.3 5.45 610.3 764.2 60.63 (1.0 + 0.105Sds)D + 0.75L + 0.75S +...223.1 5.45 610.3 771.1 60.95 1.0D + 0.75L + 0.75S 99.14 0 610.3 767.2 0 (0.6 - 0.14Sds)D + 0.7E 192.6 7.27 610.3 667.4 56.58 (0.6 + 0.14Sds)D + 0.7E 196.2 7.27 610.3 677.2 57.01 0.6D 31.02 0 610.3 672.7 0 Strength Check Results Summary (continued) QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 2 of 6 Tuesday 02/09/21 11:38 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW8 Design Forces Factored Loads Wall Weight 13.98 k 12 ft 11 . 2 f t -863 lb/ft12.7 k 37.03 k 0 k69.85 ft·k Shear Check Anv bd 9.63 in 137.1 in 9.17 ft² = = = fv V Anv 0 k 9.17 ft² 0 psi = = = There is zero applied shear force in this load case  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 11.2 ft 2.78 in / 48.3715  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 9.63 ft² 0.65 0 in²32000 psi + 1 11.2 ft 140 2.78 in 2 ^ - = 610.3 k = P 37.03 k  Pa 610.3 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 5.52 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 137.1 in 2 / 68.560 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 5.52 in² 9.63 ft² / 0.0040 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 69.85 ft·k 0 k 137.1 in INF  1.0 = = P 37.03 k < 0.05 f'm An 0.05 2000 psi 9.63 ft² 138.6 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 375 750 1125 1500 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 37.03 k TENSION controlled (fs = Fs = 32000 psi) k = 0.239 14 4 i n 34 . 3 6 i n 0.00036 -0.00115 646 psi fs = 32000 psi 106.8 k 9.82 k 9.07 k 8.33 k 7.59 k 6.84 k 6.1 k 5.36 k 4.61 k 3.87 k 3.13 k 2.38 k 1.64 k 0.9 k 0.15 k 37.03 k 744.8 ft·k P 37.03 k = Mallow 744.8 ft·k from interaction diagram given P = M 69.85 ft·k  Mallow 744.8 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: 1.0D + 1.0L] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 3 of 6 Tuesday 02/09/21 11:38 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW8 Design Forces Factored Loads Wall Weight 14.47 k 12 ft 11 . 2 f t 9.59 k -56 ft·k-893.33 lb/ft9.73 k 34.92 k -9.59 k216.9 ft·k Shear Check Anv bd 9.63 in 137.1 in 9.17 ft² = = = fv V Anv 9.59 k 9.17 ft² 7.27 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 1.0 - f'm 0.25 P An + = 1 2 4.0 1.75 1.0 - 2000 psi 0.25 34.92 k 9.63 ft² + = 56.61 psi = with term M Vd limited to 1.0 / Fvs 0.5 Av Fs d An s 0.5 0.04 in²32000 psi 137.1 in 9.63 ft²24 in 2.84 psi = = = Fv Fvm Fvs + g 56.61 psi 2.84 psi + 1.0 59.45 psi = = = 2f'm g 2 2000 psi 1.0 89.44 psi = = ...upper limit on Fv from eqn 827 - Limit did not govern fv 7.27 psi  Fv 59.45 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 11.2 ft 2.78 in / 48.3715  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 9.63 ft² 0.65 0 in²32000 psi + 1 11.2 ft 140 2.78 in 2 ^ - = 610.3 k = P 34.92 k  Pa 610.3 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 5.52 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 137.1 in 2 / 68.560 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 5.52 in² 9.63 ft² / 0.0040 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 216.9 ft·k 9.59 k 137.1 in 1.9796  1.0 = = P 34.92 k < 0.05 f'm An 0.05 2000 psi 9.63 ft² 138.6 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 375 750 1125 1500 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 34.92 k TENSION controlled (fs = Fs = 32000 psi) k = 0.237 14 4 i n 34 . 0 9 i n 0.00036 -0.00115 639.3 psi fs = 32000 psi 104.9 k 9.82 k 9.08 k 8.33 k 7.59 k 6.85 k 6.11 k 5.37 k 4.63 k 3.88 k 3.14 k 2.4 k 1.66 k 0.92 k 0.18 k 34.92 k 735.7 ft·k P 34.92 k = Mallow 735.7 ft·k from interaction diagram given P = M 216.9 ft·k  Mallow 735.7 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (1.0 + 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 4 of 6 Tuesday 02/09/21 11:38 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW8 Design Forces Factored Loads Wall Weight 14.35 k 12 ft 11 . 2 f t 7.19 k -42 ft·k-885.74 lb/ft18.27 k 43.25 k -7.19 k223.1 ft·k Shear Check Anv bd 9.63 in 137.1 in 9.17 ft² = = = fv V Anv 7.19 k 9.17 ft² 5.45 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 1.0 - f'm 0.25 P An + = 1 2 4.0 1.75 1.0 - 2000 psi 0.25 43.25 k 9.63 ft² + = 58.11 psi = with term M Vd limited to 1.0 / Fvs 0.5 Av Fs d An s 0.5 0.04 in²32000 psi 137.1 in 9.63 ft²24 in 2.84 psi = = = Fv Fvm Fvs + g 58.11 psi 2.84 psi + 1.0 60.95 psi = = = 2f'm g 2 2000 psi 1.0 89.44 psi = = ...upper limit on Fv from eqn 827 - Limit did not govern fv 5.45 psi  Fv 60.95 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 11.2 ft 2.78 in / 48.3715  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 9.63 ft² 0.65 0 in²32000 psi + 1 11.2 ft 140 2.78 in 2 ^ - = 610.3 k = P 43.25 k  Pa 610.3 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 5.52 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 137.1 in 2 / 68.560 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 5.52 in² 9.63 ft² / 0.0040 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 223.1 ft·k 7.19 k 137.1 in 2.7140  1.0 = = P 43.25 k < 0.05 f'm An 0.05 2000 psi 9.63 ft² 138.6 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 375 750 1125 1500 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 43.25 k TENSION controlled (fs = Fs = 32000 psi) k = 0.244 14 4 i n 35 . 1 3 i n 0.00037 -0.00115 665.4 psi fs = 32000 psi 112.5 k 9.82 k 9.07 k 8.32 k 7.57 k 6.82 k 6.07 k 5.32 k 4.57 k 3.83 k 3.08 k 2.33 k 1.58 k 0.83 k 0.08 k 43.25 k 771.1 ft·k P 43.25 k = Mallow 771.1 ft·k from interaction diagram given P = M 223.1 ft·k  Mallow 771.1 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (1.0 + 0.105Sds)D + 0.75L + 0.75S + 0.525E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 5 of 6 Tuesday 02/09/21 11:38 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW8 Design Forces Factored Loads Wall Weight 7.9 k 12 ft 11 . 2 f t 9.59 k -56 ft·k-487.47 lb/ft5.31 k 19.05 k -9.59 k192.6 ft·k Shear Check Anv bd 9.63 in 137.1 in 9.17 ft² = = = fv V Anv 9.59 k 9.17 ft² 7.27 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 1.0 - f'm 0.25 P An + = 1 2 4.0 1.75 1.0 - 2000 psi 0.25 19.05 k 9.63 ft² + = 53.75 psi = with term M Vd limited to 1.0 / Fvs 0.5 Av Fs d An s 0.5 0.04 in²32000 psi 137.1 in 9.63 ft²24 in 2.84 psi = = = Fv Fvm Fvs + g 53.75 psi 2.84 psi + 1.0 56.58 psi = = = 2f'm g 2 2000 psi 1.0 89.44 psi = = ...upper limit on Fv from eqn 827 - Limit did not govern fv 7.27 psi  Fv 56.58 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 11.2 ft 2.78 in / 48.3715  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 9.63 ft² 0.65 0 in²32000 psi + 1 11.2 ft 140 2.78 in 2 ^ - = 610.3 k = P 19.05 k  Pa 610.3 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 5.52 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 137.1 in 2 / 68.560 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 5.52 in² 9.63 ft² / 0.0040 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 192.6 ft·k 9.59 k 137.1 in 1.7577  1.0 = = P 19.05 k < 0.05 f'm An 0.05 2000 psi 9.63 ft² 138.6 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 375 750 1125 1500 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 19.05 k TENSION controlled (fs = Fs = 32000 psi) k = 0.222 14 4 i n 31 . 9 6 i n 0.00033 -0.00114 587.6 psi fs = 32000 psi 90.39 k 9.82 k 9.09 k 8.36 k 7.64 k 6.91 k 6.18 k 5.46 k 4.73 k 4 k 3.27 k 2.55 k 1.82 k 1.09 k 0.37 k 19.05 k 667.4 ft·k P 19.05 k = Mallow 667.4 ft·k from interaction diagram given P = M 192.6 ft·k  Mallow 667.4 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (0.6 - 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 6 of 6 Tuesday 02/09/21 11:38 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW9 9. 6 3 i n Distributed Vertical Reinforcement: #5 @ 8 in Horizontal Reinforcement: 10" wall Std Truss-Mesh HB Lox All 120 @ 2 12 ft 12 f t Design Detail Check Summary Ratio Check Provided Required Combination ----- Strength Checks ----- 0.000 Axial Tension 32 k 0 k 1.0D + 1.0L 0.230 Shear 56.24 psi 12.94 psi (0.6 - 0.14Sds)D + 0.7E 0.053 Axial Compression 598 k 31.73 k (1.0 + 0.105Sds)D + 0.75L + 0.525E 0.486 Axial+Flexure 656 ft·k 318.7 ft·k (0.6 - 0.14Sds)D + 0.7E ----- Reinforcement Limits ----- 0.500 Shear Bar Spacing 24 in 48 in 1.0D + 1.0L 0.016 Vert Bar Area 0.04 in²0 in²1.0D + 1.0L 0.083 Vert Bar Spacing 8 in 96 in 1.0D + 1.0L Criteria Use basic criteria from common project s...Yes Building Code TMS 402-13 (MSJC... Strength Combinations ASCE 7-10 (ASD) Apply Sds Factor to Seismic Combinatio... Yes Sds (from ASCE 7) 0.25 Seismic R Value 2.00 f'm 2000 psi fy 60000 psi Specify Wall Weight Manually No Block Weight Normal weight Design As Clay Masonry No Include Wall Self-Weight Yes End Bars Only For Flexural/Axial Analysis No Multiply Seismic Shear By 1.5 No Load Combinations ASCE 7-10 (ASD) 1.0D + 1.0L (1.0 - 0.14Sds)D + 0.7E (1.0 + 0.14Sds)D + 0.7E 1.0D (1.0 - 0.105Sds)D + 0.75L + 0.525E (1.0 + 0.105Sds)D + 0.75L + 0.525E 1.0D + 0.75L (0.6 - 0.14Sds)D + 0.7E (0.6 + 0.14Sds)D + 0.7E 0.6D Interaction Diagram 1500 1100 700 300 -100 -5000 300 600 900 1200 1500 Moment (ft·k) Axial Force (k) Interaction Diagram Loads Summary Load Set Source Axial Pt Load Offset from CenterEnd 1 Axial Distr...End 2 Axial Distr...Shear Pt Load Shear Distribute...Shear Offset Fro...Moment Dead 0 k 0 ft 884 lb/ft 884 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Earthquake 0 k 0 ft 0 lb/ft 0 lb/ft 24.4 k 0 lb/ft 0 ft -178 ft·k Dead 3.5 k -5.5 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Live 2.5 k -5.5 ft 0 lb/ft 0 lb/ft 0 k 0 lb/ft 0 ft 0 ft·k Load Combination Factored Axial Factored Moment Factored Shear Factored Wall Weight Design Compression Design Tension (k)(ft·k)(k)(k)(k)(k) 1.0D + 1.0L 6 0 0 14.98 31.58 0 (1.0 - 0.14Sds)D + 0.7E 3.38 -124.6 17.08 14.45 28.06 0 (1.0 + 0.14Sds)D + 0.7E 3.62 -124.6 17.08 15.5 30.11 0 1.0D 3.5 0 0 14.98 29.08 0 (1.0 - 0.105Sds)D + 0.75L + 0.525E 5.28 -93.45 12.81 14.58 30.19 0 (1.0 + 0.105Sds)D + 0.75L + 0.525E 5.47 -93.45 12.81 15.37 31.73 0 1.0D + 0.75L 5.38 0 0 14.98 30.96 0 (0.6 - 0.14Sds)D + 0.7E 1.98 -124.6 17.08 8.46 16.43 0 (0.6 + 0.14Sds)D + 0.7E 2.22 -124.6 17.08 9.51 18.47 0 0.6D 2.1 0 0 8.99 17.45 0 Strength Check Results Summary QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 1 of 5 Tuesday 02/09/21 11:40 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW9 Load Combination Design Moment Design Shear Stress Allowable Axial Allowable Moment Allowable Shear Stress (ft·k)(psi)(k)(ft·k)(psi) 1.0D + 1.0L 33 0 598 721.3 0 (1.0 - 0.14Sds)D + 0.7E 311 12.94 598 706.2 58.34 (1.0 + 0.14Sds)D + 0.7E 309.6 12.94 598 715.4 58.71 1.0D 19.25 0 598 710.8 0 (1.0 - 0.105Sds)D + 0.75L + 0.525E 218.1 9.71 598 715.7 58.73 (1.0 + 0.105Sds)D + 0.75L + 0.525E 217.1 9.71 598 722.2 59 1.0D + 0.75L 29.56 0 598 718.5 0 (0.6 - 0.14Sds)D + 0.7E 318.7 12.94 598 656 56.24 (0.6 + 0.14Sds)D + 0.7E 317.3 12.94 598 664.8 56.61 0.6D 11.55 0 598 660.4 0 Strength Check Results Summary (continued) QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 2 of 5 Tuesday 02/09/21 11:40 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW9 Design Forces Factored Loads Wall Weight 14.98 k 12 ft 12 f t -884 lb/ft6 k 31.58 k 0 k33 ft·k Shear Check Anv bd 9.63 in 137.1 in 9.17 ft² = = = fv V Anv 0 k 9.17 ft² 0 psi = = = There is zero applied shear force in this load case  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 12 ft 2.78 in / 51.8266  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 9.63 ft² 0.65 0 in²32000 psi + 1 12 ft 140 2.78 in 2 ^ - = 598 k = P 31.58 k  Pa 598 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 5.52 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 137.1 in 2 / 68.560 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 5.52 in² 9.63 ft² / 0.0040 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 33 ft·k 0 k 137.1 in INF  1.0 = = P 31.58 k < 0.05 f'm An 0.05 2000 psi 9.63 ft² 138.6 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 375 750 1125 1500 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 31.58 k TENSION controlled (fs = Fs = 32000 psi) k = 0.234 14 4 i n 33 . 6 5 i n 0.00035 -0.00114 628.5 psi fs = 32000 psi 101.8 k 9.82 k 9.08 k 8.34 k 7.6 k 6.86 k 6.12 k 5.39 k 4.65 k 3.91 k 3.17 k 2.43 k 1.69 k 0.96 k 0.22 k 31.58 k 721.3 ft·k P 31.58 k = Mallow 721.3 ft·k from interaction diagram given P = M 33 ft·k  Mallow 721.3 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: 1.0D + 1.0L] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 3 of 5 Tuesday 02/09/21 11:40 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW9 Design Forces Factored Loads Wall Weight 15.37 k 12 ft 12 f t -907.3 lb/ft 12.81 k -93.45 ft·k5.47 k 31.73 k -12.81 k217.1 ft·k Shear Check Anv bd 9.63 in 137.1 in 9.17 ft² = = = fv V Anv 12.81 k 9.17 ft² 9.71 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 1.0 - f'm 0.25 P An + = 1 2 4.0 1.75 1.0 - 2000 psi 0.25 31.73 k 9.63 ft² + = 56.03 psi = with term M Vd limited to 1.0 / Fvs 0.5 Av Fs d An s 0.5 0.04 in²32000 psi 137.1 in 9.63 ft²24 in 2.97 psi = = = Fv Fvm Fvs + g 56.03 psi 2.97 psi + 1.0 59 psi = = = 2f'm g 2 2000 psi 1.0 89.44 psi = = ...upper limit on Fv from eqn 827 - Limit did not govern fv 9.71 psi  Fv 59 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 12 ft 2.78 in / 51.8266  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 9.63 ft² 0.65 0 in²32000 psi + 1 12 ft 140 2.78 in 2 ^ - = 598 k = P 31.73 k  Pa 598 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 5.52 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 137.1 in 2 / 68.560 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 5.52 in² 9.63 ft² / 0.0040 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 217.1 ft·k 12.81 k 137.1 in 1.4832  1.0 = = P 31.73 k < 0.05 f'm An 0.05 2000 psi 9.63 ft² 138.6 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 375 750 1125 1500 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 31.73 k TENSION controlled (fs = Fs = 32000 psi) k = 0.234 14 4 i n 33 . 6 8 i n 0.00035 -0.00114 629.2 psi fs = 32000 psi 102 k 9.82 k 9.08 k 8.34 k 7.6 k 6.86 k 6.12 k 5.39 k 4.65 k 3.91 k 3.17 k 2.43 k 1.69 k 0.95 k 0.21 k 31.73 k 722.2 ft·k P 31.73 k = Mallow 722.2 ft·k from interaction diagram given P = M 217.1 ft·k  Mallow 722.2 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (1.0 + 0.105Sds)D + 0.75L + 0.525E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 4 of 5 Tuesday 02/09/21 11:40 PM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Shear Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) SW9 Design Forces Factored Loads Wall Weight 8.46 k 12 ft 12 f t -499.34 lb/ft 17.08 k -124.6 ft·k1.98 k 16.43 k -17.08 k318.7 ft·k Shear Check Anv bd 9.63 in 137.1 in 9.17 ft² = = = fv V Anv 17.08 k 9.17 ft² 12.94 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 1.0 - f'm 0.25 P An + = 1 2 4.0 1.75 1.0 - 2000 psi 0.25 16.43 k 9.63 ft² + = 53.27 psi = with term M Vd limited to 1.0 / Fvs 0.5 Av Fs d An s 0.5 0.04 in²32000 psi 137.1 in 9.63 ft²24 in 2.97 psi = = = Fv Fvm Fvs + g 53.27 psi 2.97 psi + 1.0 56.24 psi = = = 2f'm g 2 2000 psi 1.0 89.44 psi = = ...upper limit on Fv from eqn 827 - Limit did not govern fv 12.94 psi  Fv 56.24 psi = =  Shear [MSJC-13 8.3.6] Compression Check Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 12 ft 2.78 in / 51.8266  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 9.63 ft² 0.65 0 in²32000 psi + 1 12 ft 140 2.78 in 2 ^ - = 598 k = P 16.43 k  Pa 598 k = =  Axial Compression [MSJC-13 8.3.4.2.1] Other Checks ft T As 0 k 5.52 in² 0 psi = = = Fs 32000 psi Grade 60 reinf = ft 0 psi  Fs 32000 psi = =  Axial Tension [MSJC-13 8.3.5, 8.3.3.1] d2 / 137.1 in 2 / 68.560 > 48 = = sreqd 48 in = s 24 in  sreqd 48 in = =  13 / Av 13 / 0 in² in / 0 in² in / = = Av_perp_prov 0.04 in² in  Av_perp_reqd / 0 in² in / = =  s_perp 8 in  s_perp_reqd 96 in = =  Shear Reinforcement [MSJC-13 8.3.6.2.1, 8.3.6.2.2] As Ag / 5.52 in² 9.63 ft² / 0.0040 = = = Wall is not a special reinforced masonry shear wall per user input M Vd 318.7 ft·k 17.08 k 137.1 in 1.6329  1.0 = = P 16.43 k < 0.05 f'm An 0.05 2000 psi 9.63 ft² 138.6 k = = = = The max check is not required  Rho-Max [MSJC-13 8.3.4.4] Axial/Flexure Checks 1500 1100 700 300 -100 -5000 375 750 1125 1500 Moment (ft·k) Axial Force (k) Interaction Diagram Internal State at Max Moment Capacity for P = 16.43 k TENSION controlled (fs = Fs = 32000 psi) k = 0.219 14 4 i n 31 . 5 9 i n 0.00032 -0.00114 578.8 psi fs = 32000 psi 88.01 k 9.82 k 9.09 k 8.37 k 7.64 k 6.92 k 6.2 k 5.47 k 4.75 k 4.02 k 3.3 k 2.57 k 1.85 k 1.12 k 0.4 k 16.43 k 656 ft·k P 16.43 k = Mallow 656 ft·k from interaction diagram given P = M 318.7 ft·k  Mallow 656 ft·k = =  Combined Axial + Flexure [MSJC-13 8.3.2, 8.3.3.1, 8.3 Load Case Checks [Load Combination: (0.6 - 0.14Sds)D + 0.7E] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 5 of 5 Tuesday 02/09/21 11:40 PM03/01/2021 03/01/2021 03/01/2021 03/01/2021 03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Bearing Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) WEST EXT WALLS WORST CASE NON BEARING Vertical Bars: #4 @ 32 in 20 ft 16 . 2 f t Design Detail Check Summary Ratio Check Provided Required Combination ----- Strength Checks ----- 0.053 Axial Compression 17742 lb/ft 939.6 lb/ft 1.0D + 0.6W -0.000 Axial Tension 24 k -0 k 1.0D + 0.6W 0.028 Shear 92.35 psi 2.61 psi 0.6D + 0.6W 0.612 Axial+Flexure 9488 in·lb/ft 5810 in·lb/ft 0.6D + 0.6W Criteria Use basic criteria from common project setti...Yes Building Code TMS 402-13 (MSJC-... Strength Combinations ASCE 7-10 (ASD) Service Combinations ASCE 7-10 (ASD) Apply Sds Factor to Seismic Combinations f...Yes Sds (from ASCE 7) 0.25 Seismic R Value 2.00 f'm 2000 psi fy 60000 psi Specify Wall Weight Manually No Block Weight Normal weight Design As Clay Masonry No Include Wall Self-Weight Yes Neglect Lateral Load on Parapet No Include Wall Wt In Virtual Eccentricity No Always use I-cracked No Load Combinations ASCE 7-10 (ASD) 1.0D + 0.6W 1.0D + 0.45W 1.0D 0.6D + 0.6W 0.6D Interaction Diagram 50000 38000 26000 14000 2000 -100000 10000 20000 30000 40000 50000 Moment (in·lb/ft) Axial Force (lb/ft) Interaction Diagram Loads Summary Load Set Source Axial Uniform...Axial Pt Load Pt Ld Eff Width Eccentricity Lateral Press...Top Lateral P...Parapet Pres...Lateral Unifor...Lat Unif Ld H...Moment Wind 0 lb/ft 0 k 1 ft 0 in 24.6 psf 24.6 psf 24.6 psf 0 lb/ft 1 ft 0 in·lb/ft Load Combination Factored Axial Factored Wall Weight Factored Moment Factored Pressure-Bottom Factored Pressure-Top Axial Load Eccentricity Design Axial Compression @ roof (lb/ft)(lb/ft)(in·lb/ft)(psf)(psf)(in)(lb/ft) 1.0D + 0.6W -0 939.6 0 14.76 14.76 0 0 1.0D + 0.45W -0 939.6 0 11.07 11.07 0 0 1.0D -0 939.600000 0.6D + 0.6W -0 563.8 0 14.76 14.76 0 0 0.6D -0 563.800000 Strength Check Results Summary QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 1 of 4 Wednesday 02/10/21 1:03 AM 4- exterior masonry walls 03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Bearing Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) WEST EXT WALLS WORST CASE NON BEARING Load Combination Design Axial Compression @ max M Design Axial Compression @ base Max Moment Design Shear Design Axial Tension @ roof Top Support Horz Reaction (lb/ft)(lb/ft)(in·lb/ft)(lb/ft)(lb/ft)(lb/ft) 1.0D + 0.6W 469.8 939.6 5810 119.6 -0 -119.56 1.0D + 0.45W 469.8 939.6 4358 89.67 -0 -89.67 1.0D 469.8 939.6 0 0 -0 -0 0.6D + 0.6W 281.9 563.8 5810 119.6 -0 -119.56 0.6D 281.9 563.8 0 0 -0 -0 Strength Check Results Summary (continued) QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 2 of 4 Wednesday 02/10/21 1:03 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Bearing Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) WEST EXT WALLS WORST CASE NON BEARING Design Forces 16.2 14.17 12.15 10.12 8.1 6.07 4.05 2.02 0-200 -100 0 100 200 V (lb/ft) Shear 16.2 14.17 12.15 10.12 8.1 6.07 4.05 2.02 0-6000 -4500 -3000 -1500 0 M (in·lb/ft) Moment 14.76 psf 939.6 lb/ft -119.56 lb/ft -119.56 lb/ft Factored Loads Wall Weight 939.6 lb/ft Effective Eccentricity 0 in Applied Eccentricity 0 in Axial/Flexure Checks 60000 44000 28000 12000 -4000 -200000 12500 25000 37500 50000 Moment (in·lb/ft) Axial Force (lb/ft) Interaction Diagram 0. 8 5 i n 32 in 7. 6 3 i n Internal State at Max Moment Capacity for P = 469.8 lb/ft TENSION controlled (fs = Fs = 32000 psi) k = 0.111 7. 6 3 i n 0. 8 5 i n 0.00031 -0.00252 565.9 psi fs = 32000 psi 2871 lb/ft 2400 lb/ft469.8 lb/ft 10135 in·lb/ft P 939.6 lb ft / = Mallow 11718 in·lb ft from interaction diagram given P / = M 0 in·lb ft  Mallow / 11718 in·lb ft / = =  Combined Axial + Flexure (@ base) [MSJC-13 8.3.2, 8.3 P 469.8 lb ft / = Mallow 10135 in·lb ft from interaction diagram given P / = M 5810 in·lb ft  Mallow / 10135 in·lb ft / = =  Combined Axial + Flexure (@ max M) [MSJC-13 8.3.3.2 P 0 lb ft / = Mallow 8522 in·lb ft from interaction diagram given P / = M 0 in·lb ft  Mallow / 8522 in·lb ft / = =  Combined Axial + Flexure (@ top) [MSJC-13 8.3.3.2.2, Other Checks Anv d 3.81 in 0.32 ft² ft area per length of wall / = = = fv V Anv 119.6 lb ft / 0.32 ft² ft / 2.61 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 M Vd - f'm 0.25 P An + = 1 2 4.0 1.75 0 ft·k 2.39 k 3.81 in - 2000 psi 0.25 18.79 k 6.73 ft² + = 94.29 psi = Fvs 0 psi ...no shear reinforcement = Fv Fvm Fvs + g 94.29 psi 0 psi + 1.0 94.29 psi = = = 3f'm g 3 2000 psi 1.0 134.2 psi = = ...upper limit on Fv from eqn 826 - Limit did not govern fv 2.61 psi  Fv 94.29 psi = =  Shear [MSJC-13 8.3.6] Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 16.2 ft 2.68 in / 72.4222  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 0.34 ft² ft / 0.65 0 in² in / 32000 psi + 1 16.2 ft 140 2.68 in 2 ^ - = 17742 lb ft / = P 939.6 lb ft  Pa / 17742 lb ft / = =  Axial Compression (@ base) [MSJC-13 8.3.4.2.1] Load Case Checks [Load Combination: 1.0D + 0.6W] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 3 of 4 Wednesday 02/10/21 1:03 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Bearing Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) WEST EXT WALLS WORST CASE NON BEARING Design Forces 16.2 14.17 12.15 10.12 8.1 6.07 4.05 2.02 0-200 -100 0 100 200 V (lb/ft) Shear 16.2 14.17 12.15 10.12 8.1 6.07 4.05 2.02 0-6000 -4500 -3000 -1500 0 M (in·lb/ft) Moment 14.76 psf 563.8 lb/ft -119.56 lb/ft -119.56 lb/ft Factored Loads Wall Weight 563.8 lb/ft Effective Eccentricity 0 in Applied Eccentricity 0 in Axial/Flexure Checks 60000 44000 28000 12000 -4000 -200000 12500 25000 37500 50000 Moment (in·lb/ft) Axial Force (lb/ft) Interaction Diagram 0. 8 2 i n 32 in 7. 6 3 i n Internal State at Max Moment Capacity for P = 281.9 lb/ft TENSION controlled (fs = Fs = 32000 psi) k = 0.108 7. 6 3 i n 0. 8 2 i n 0.00030 -0.00251 544.6 psi fs = 32000 psi 2681 lb/ft 2400 lb/ft281.9 lb/ft 9488 in·lb/ft P 563.8 lb ft / = Mallow 10453 in·lb ft from interaction diagram given P / = M 0 in·lb ft  Mallow / 10453 in·lb ft / = =  Combined Axial + Flexure (@ base) [MSJC-13 8.3.2, 8.3 P 281.9 lb ft / = Mallow 9488 in·lb ft from interaction diagram given P / = M 5810 in·lb ft  Mallow / 9488 in·lb ft / = =  Combined Axial + Flexure (@ max M) [MSJC-13 8.3.3.2 P 0 lb ft / = Mallow 8522 in·lb ft from interaction diagram given P / = M 0 in·lb ft  Mallow / 8522 in·lb ft / = =  Combined Axial + Flexure (@ top) [MSJC-13 8.3.3.2.2, Other Checks Anv d 3.81 in 0.32 ft² ft area per length of wall / = = = fv V Anv 119.6 lb ft / 0.32 ft² ft / 2.61 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 M Vd - f'm 0.25 P An + = 1 2 4.0 1.75 0 ft·k 2.39 k 3.81 in - 2000 psi 0.25 11.28 k 6.73 ft² + = 92.35 psi = Fvs 0 psi ...no shear reinforcement = Fv Fvm Fvs + g 92.35 psi 0 psi + 1.0 92.35 psi = = = 3f'm g 3 2000 psi 1.0 134.2 psi = = ...upper limit on Fv from eqn 826 - Limit did not govern fv 2.61 psi  Fv 92.35 psi = =  Shear [MSJC-13 8.3.6] Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 16.2 ft 2.68 in / 72.4222  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 0.34 ft² ft / 0.65 0 in² in / 32000 psi + 1 16.2 ft 140 2.68 in 2 ^ - = 17742 lb ft / = P 563.8 lb ft  Pa / 17742 lb ft / = =  Axial Compression (@ base) [MSJC-13 8.3.4.2.1] Load Case Checks [Load Combination: 0.6D + 0.6W] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 4 of 4 Wednesday 02/10/21 1:03 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Bearing Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) WEST AND NORTH EXT WALLS WORST CASE BEARING Vertical Bars: #4 @ 32 in 20 ft 16 . 2 f t Design Detail Check Summary Ratio Check Provided Required Combination ----- Strength Checks ----- 0.120 Axial Compression 17742 lb/ft 2127 lb/ft 1.0D + 1.0S 0.000 Axial Tension 24 k 0 k 1.0D + 1.0S 0.028 Shear 93.58 psi 2.61 psi 0.6D + 0.6W 0.564 Axial+Flexure 10301 in·lb/ft 5810 in·lb/ft 0.6D + 0.6W Criteria Use basic criteria from common project setti...Yes Building Code TMS 402-13 (MSJC-... Strength Combinations ASCE 7-10 (ASD) Service Combinations ASCE 7-10 (ASD) Apply Sds Factor to Seismic Combinations f...Yes Sds (from ASCE 7) 0.25 Seismic R Value 2.00 f'm 2000 psi fy 60000 psi Specify Wall Weight Manually No Block Weight Normal weight Design As Clay Masonry No Include Wall Self-Weight Yes Neglect Lateral Load on Parapet No Include Wall Wt In Virtual Eccentricity No Always use I-cracked No Load Combinations ASCE 7-10 (ASD) 1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75S + 0.45W 1.0D + 0.45W 1.0D 1.0D + 0.75S 0.6D + 0.6W 0.6D Interaction Diagram 50000 38000 26000 14000 2000 -100000 10000 20000 30000 40000 50000 Moment (in·lb/ft) Axial Force (lb/ft) Interaction Diagram Loads Summary Load Set Source Axial Uniform...Axial Pt Load Pt Ld Eff Width Eccentricity Lateral Press...Top Lateral P...Parapet Pres...Lateral Unifor...Lat Unif Ld H...Moment Wind 0 lb/ft 0 k 1 ft 0 in 24.6 psf 24.6 psf 24.6 psf 0 lb/ft 1 ft 0 in·lb/ft Dead 396 lb/ft 0 k 1 ft 0 in 0 psf 0 psf 0 psf 0 lb/ft 1 ft 0 in·lb/ft Snow 791 lb/ft 0 k 1 ft 0 in 0 psf 0 psf 0 psf 0 lb/ft 1 ft 0 in·lb/ft Load Combination Factored Axial Factored Wall Weight Factored Moment Factored Pressure-Bottom Factored Pressure-Top Axial Load Eccentricity Design Axial Compression @ roof (lb/ft)(lb/ft)(in·lb/ft)(psf)(psf)(in)(lb/ft) 1.0D + 1.0S 1187 939.6000-01187 1.0D + 0.6W 396 939.6 0 14.76 14.76 -0 396 1.0D + 0.75S + 0.45W 989.3 939.6 0 11.07 11.07 -0 989.3 1.0D + 0.45W 396 939.6 0 11.07 11.07 -0 396 1.0D 396 939.6000-0396 1.0D + 0.75S 989.3 939.6000-0989.3 0.6D + 0.6W 237.6 563.8 0 14.76 14.76 -0 237.6 0.6D 237.6 563.8000-0237.6 Strength Check Results Summary QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 1 of 4 Wednesday 02/10/21 1:04 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Bearing Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) WEST AND NORTH EXT WALLS WORST CASE BEARING Load Combination Design Axial Compression @ max M Design Axial Compression @ base Max Moment Design Shear Design Axial Tension @ roof Top Support Horz Reaction (lb/ft)(lb/ft)(in·lb/ft)(lb/ft)(lb/ft)(lb/ft) 1.0D + 1.0S 1657 2127000-0 1.0D + 0.6W 865.8 1336 5810 119.6 0 -119.56 1.0D + 0.75S + 0.45W 1459 1929 4358 89.67 0 -89.67 1.0D + 0.45W 865.8 1336 4358 89.67 0 -89.67 1.0D 865.8 1336000-0 1.0D + 0.75S 1459 1929000-0 0.6D + 0.6W 519.5 801.4 5810 119.6 0 -119.56 0.6D 519.5 801.4000-0 Strength Check Results Summary (continued) QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 2 of 4 Wednesday 02/10/21 1:04 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Bearing Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) WEST AND NORTH EXT WALLS WORST CASE BEARING Design Forces 16.2 14.17 12.15 10.12 8.1 6.07 4.05 2.02 0-2000 -1000 0 1000 2000 V (lb/ft) Shear 16.2 14.17 12.15 10.12 8.1 6.07 4.05 2.02 0-2000 -1000 0 1000 2000 M (in·lb/ft) Moment1187 lb/ft 2127 lb/ft -0 lb/ft -0 lb/ft Factored Loads Wall Weight 939.6 lb/ft Effective Eccentricity 0 in Applied Eccentricity -0 in Axial/Flexure Checks 60000 44000 28000 12000 -4000 -200000 12500 25000 37500 50000 Moment (in·lb/ft) Axial Force (lb/ft) Interaction Diagram 0. 9 8 i n 32 in 7. 6 3 i n Internal State at Max Moment Capacity for P = 1657 lb/ft TENSION controlled (fs = Fs = 32000 psi) k = 0.129 7. 6 3 i n 0. 9 8 i n 0.00038 -0.00259 688.5 psi fs = 32000 psi 4054 lb/ft 2400 lb/ft1657 lb/ft 14129 in·lb/ft P 2127 lb ft / = Mallow 15701 in·lb ft from interaction diagram given P / = M 0 in·lb ft  Mallow / 15701 in·lb ft / = =  Combined Axial + Flexure (@ base) [MSJC-13 8.3.2, 8.3 P 1657 lb ft / = Mallow 14129 in·lb ft from interaction diagram given P / = M 0 in·lb ft  Mallow / 14129 in·lb ft / = =  Combined Axial + Flexure (@ max M) [MSJC-13 8.3.3.2 P 1187 lb ft / = Mallow 12555 in·lb ft from interaction diagram given P / = M 0 in·lb ft  Mallow / 12555 in·lb ft / = =  Combined Axial + Flexure (@ top) [MSJC-13 8.3.3.2.2, Other Checks Anv d 3.81 in 0.32 ft² ft area per length of wall / = = = fv V Anv 0 lb ft / 0.32 ft² ft / 0 psi = = = There is zero applied shear force in this load case  Shear [MSJC-13 8.3.6] Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 16.2 ft 2.68 in / 72.4222  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 0.34 ft² ft / 0.65 0 in² in / 32000 psi + 1 16.2 ft 140 2.68 in 2 ^ - = 17742 lb ft / = P 2127 lb ft  Pa / 17742 lb ft / = =  Axial Compression (@ base) [MSJC-13 8.3.4.2.1] Load Case Checks [Load Combination: 1.0D + 1.0S] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 3 of 4 Wednesday 02/10/21 1:04 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC Bearing Wall Design • TMS 402-13 (MSJC-13) • ASD (Allowable Stress) • Reinforced • Concrete Masonry (CMU) WEST AND NORTH EXT WALLS WORST CASE BEARING Design Forces 16.2 14.17 12.15 10.12 8.1 6.07 4.05 2.02 0-200 -100 0 100 200 V (lb/ft) Shear 16.2 14.17 12.15 10.12 8.1 6.07 4.05 2.02 0-6000 -4500 -3000 -1500 0 M (in·lb/ft) Moment 14.76 psf 237.6 lb/ft 801.4 lb/ft -119.56 lb/ft -119.56 lb/ft Factored Loads Wall Weight 563.8 lb/ft Effective Eccentricity 0 in Applied Eccentricity -0 in Axial/Flexure Checks 60000 44000 28000 12000 -4000 -200000 12500 25000 37500 50000 Moment (in·lb/ft) Axial Force (lb/ft) Interaction Diagram 0. 8 5 i n 32 in 7. 6 3 i n Internal State at Max Moment Capacity for P = 519.5 lb/ft TENSION controlled (fs = Fs = 32000 psi) k = 0.112 7. 6 3 i n 0. 8 5 i n 0.00032 -0.00252 571.3 psi fs = 32000 psi 2919 lb/ft 2400 lb/ft519.5 lb/ft 10301 in·lb/ft P 801.4 lb ft / = Mallow 11254 in·lb ft from interaction diagram given P / = M 0 in·lb ft  Mallow / 11254 in·lb ft / = =  Combined Axial + Flexure (@ base) [MSJC-13 8.3.2, 8.3 P 519.5 lb ft / = Mallow 10301 in·lb ft from interaction diagram given P / = M 5810 in·lb ft  Mallow / 10301 in·lb ft / = =  Combined Axial + Flexure (@ max M) [MSJC-13 8.3.3.2 P 237.6 lb ft / = Mallow 9336 in·lb ft from interaction diagram given P / = M 0 in·lb ft  Mallow / 9336 in·lb ft / = =  Combined Axial + Flexure (@ top) [MSJC-13 8.3.3.2.2, Other Checks Anv d 3.81 in 0.32 ft² ft area per length of wall / = = = fv V Anv 119.6 lb ft / 0.32 ft² ft / 2.61 psi = = = g 1.0 not a partially grouted shear wall = Fvm 1 2 4.0 1.75 M Vd - f'm 0.25 P An + = 1 2 4.0 1.75 0 ft·k 2.39 k 3.81 in - 2000 psi 0.25 16.03 k 6.73 ft² + = 93.58 psi = Fvs 0 psi ...no shear reinforcement = Fv Fvm Fvs + g 93.58 psi 0 psi + 1.0 93.58 psi = = = 3f'm g 3 2000 psi 1.0 134.2 psi = = ...upper limit on Fv from eqn 826 - Limit did not govern fv 2.61 psi  Fv 93.58 psi = =  Shear [MSJC-13 8.3.6] Fs 32000 psi Grade 60 reinf = Ast 0 in² in bars are not tied / = hr / 16.2 ft 2.68 in / 72.4222  99 = = Pa 0.25 f'm An 0.65 Ast Fs + 1 h 140 r 2 ^ - = 0.25 2000 psi 0.34 ft² ft / 0.65 0 in² in / 32000 psi + 1 16.2 ft 140 2.68 in 2 ^ - = 17742 lb ft / = P 801.4 lb ft  Pa / 17742 lb ft / = =  Axial Compression (@ base) [MSJC-13 8.3.4.2.1] Load Case Checks [Load Combination: 0.6D + 0.6W] QuickMasonry 5.0 (iesweb.com) P:\JOBS\Completed Jobs\2018\18-1015...\232 Main Aspen.qms Page 4 of 4 Wednesday 02/10/21 1:04 AM03/01/2021 Steel Beam K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:L1 - @ 6" CMU K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : IBC 2018 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Beam is Fully Braced against lateral-torsional buckling Allowable Strength Design Fy : Steel Yield :36.0 ksi Beam Bracing :E: Modulus :29,000.0 Vertical Leg Up .Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Uniform Load : D = 0.360 k/ft, Tributary Width = 1.0 ft .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.241 : 1 Load Combination +D+H Span # where maximum occurs Span # 1 Location of maximum on span 2.000 ft 0.7396 k Mn / Omega : Allowable 3.072 k-ft Vn/Omega : Allowable LL 3x3x1/4Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination +D+H 19.401 k Section used for this span LL 3x3x1/4 Ma : Applied Maximum Shear Stress Ratio =0.038 : 1 0.000 ft 0.740 k-ft Va : Applied 0 <360 1600 Ratio =0 <600.0 Maximum Deflection Max Downward Transient Deflection 0.000 in 0Ratio =<360 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.030 in Ratio =>=600. Max Upward Total Deflection 0.000 in .Maximum Forces & Stresses for Load Combinations Span # Summary of Moment ValuesLoad Combination Summary of Shear ValuesMax Stress Ratios M V Mmax -Mmax +Rm VnxMa Max Mnx/Omega Cb Va MaxMnx Vnx/OmegaSegment Length +D+H Dsgn. L = 4.00 ft 1 0.241 0.038 0.74 0.74 5.13 3.07 1.00 1.00 0.74 32.40 19.40 +D+L+H Dsgn. L = 4.00 ft 1 0.241 0.038 0.74 0.74 5.13 3.07 1.00 1.00 0.74 32.40 19.40 +D+Lr+H Dsgn. L = 4.00 ft 1 0.241 0.038 0.74 0.74 5.13 3.07 1.00 1.00 0.74 32.40 19.40 +D+S+H Dsgn. L = 4.00 ft 1 0.241 0.038 0.74 0.74 5.13 3.07 1.00 1.00 0.74 32.40 19.40 +D+0.750Lr+0.750L+H Dsgn. L = 4.00 ft 1 0.241 0.038 0.74 0.74 5.13 3.07 1.00 1.00 0.74 32.40 19.40 +D+0.750L+0.750S+H Dsgn. L = 4.00 ft 1 0.241 0.038 0.74 0.74 5.13 3.07 1.00 1.00 0.74 32.40 19.40 +D+0.60W+H Dsgn. L = 4.00 ft 1 0.241 0.038 0.74 0.74 5.13 3.07 1.00 1.00 0.74 32.40 19.40 +D+0.70E+H Dsgn. L = 4.00 ft 1 0.241 0.038 0.74 0.74 5.13 3.07 1.00 1.00 0.74 32.40 19.40 +D+0.750Lr+0.750L+0.450W+H Dsgn. L = 4.00 ft 1 0.241 0.038 0.74 0.74 5.13 3.07 1.00 1.00 0.74 32.40 19.40 +D+0.750L+0.750S+0.450W+H Dsgn. L = 4.00 ft 1 0.241 0.038 0.74 0.74 5.13 3.07 1.00 1.00 0.74 32.40 19.40 +D+0.750L+0.750S+0.5250E+H Dsgn. L = 4.00 ft 1 0.241 0.038 0.74 0.74 5.13 3.07 1.00 1.00 0.74 32.40 19.40 +0.60D+0.60W+0.60H Dsgn. L = 4.00 ft 1 0.144 0.023 0.44 0.44 5.13 3.07 1.00 1.00 0.44 32.40 19.40 5 - LINTELS 03/01/2021 Steel Beam K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:L1 - @ 6" CMU K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 Span # Summary of Moment ValuesLoad Combination Summary of Shear ValuesMax Stress Ratios M V Mmax -Mmax +Rm VnxMa Max Mnx/Omega Cb Va MaxMnx Vnx/OmegaSegment Length +0.60D+0.70E+0.60H Dsgn. L = 4.00 ft 1 0.144 0.023 0.44 0.44 5.13 3.07 1.00 1.00 0.44 32.40 19.40 . Location in SpanLoad CombinationMax. "-" Defl Location in SpanLoad Combination Span Max. "+" Defl Overall Maximum Deflections D Only 1 0.0300 2.011 0.0000 0.000 . Load Combination Support 1 Support 2 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 0.740 0.740 Overall MINimum 0.444 0.444 +D+H 0.740 0.740 +D+L+H 0.740 0.740 +D+Lr+H 0.740 0.740 +D+S+H 0.740 0.740 +D+0.750Lr+0.750L+H 0.740 0.740 +D+0.750L+0.750S+H 0.740 0.740 +D+0.60W+H 0.740 0.740 +D+0.70E+H 0.740 0.740 +D+0.750Lr+0.750L+0.450W+H 0.740 0.740 +D+0.750L+0.750S+0.450W+H 0.740 0.740 +D+0.750L+0.750S+0.5250E+H 0.740 0.740 +0.60D+0.60W+0.60H 0.444 0.444 +0.60D+0.70E+0.60H 0.444 0.444 D Only 0.740 0.740 H Only 03/01/2021 Steel Beam K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:L2 - AT REAR DOOR K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : IBC 2018 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Completely Unbraced Allowable Strength Design Fy : Steel Yield :50.0 ksi Beam Bracing :E: Modulus :29,000.0 .Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Uniform Load : D = 0.760, S = 0.320 k/ft, Tributary Width = 1.0 ft .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.413 : 1 Load Combination +D+S+H Span # where maximum occurs Span # 1 Location of maximum on span 5.000 ft 5.495 k Mn / Omega : Allowable 33.257 k-ft Vn/Omega : Allowable W12x19Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination +D+S+H 57.340 k Section used for this span W12x19 Ma : Applied Maximum Shear Stress Ratio =0.096 : 1 0.000 ft 13.738 k-ft Va : Applied 0 <360 1821 Ratio =0 <600.0 Maximum Deflection Max Downward Transient Deflection 0.019 in 6,254Ratio =>=360 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.066 in Ratio =>=600. Max Upward Total Deflection 0.000 in .Maximum Forces & Stresses for Load Combinations Span # Summary of Moment ValuesLoad Combination Summary of Shear ValuesMax Stress Ratios M V Mmax -Mmax +Rm VnxMa Max Mnx/Omega Cb Va MaxMnx Vnx/OmegaSegment Length +D+H Dsgn. L = 10.00 ft 1 0.293 0.068 9.74 9.74 55.54 33.26 1.14 1.00 3.90 86.01 57.34 +D+L+H Dsgn. L = 10.00 ft 1 0.293 0.068 9.74 9.74 55.54 33.26 1.14 1.00 3.90 86.01 57.34 +D+Lr+H Dsgn. L = 10.00 ft 1 0.293 0.068 9.74 9.74 55.54 33.26 1.14 1.00 3.90 86.01 57.34 +D+S+H Dsgn. L = 10.00 ft 1 0.413 0.096 13.74 13.74 55.54 33.26 1.14 1.00 5.50 86.01 57.34 +D+0.750Lr+0.750L+H Dsgn. L = 10.00 ft 1 0.293 0.068 9.74 9.74 55.54 33.26 1.14 1.00 3.90 86.01 57.34 +D+0.750L+0.750S+H Dsgn. L = 10.00 ft 1 0.383 0.089 12.74 12.74 55.54 33.26 1.14 1.00 5.10 86.01 57.34 +D+0.60W+H Dsgn. L = 10.00 ft 1 0.293 0.068 9.74 9.74 55.54 33.26 1.14 1.00 3.90 86.01 57.34 +D+0.70E+H Dsgn. L = 10.00 ft 1 0.293 0.068 9.74 9.74 55.54 33.26 1.14 1.00 3.90 86.01 57.34 +D+0.750Lr+0.750L+0.450W+H Dsgn. L = 10.00 ft 1 0.293 0.068 9.74 9.74 55.54 33.26 1.14 1.00 3.90 86.01 57.34 +D+0.750L+0.750S+0.450W+H Dsgn. L = 10.00 ft 1 0.383 0.089 12.74 12.74 55.54 33.26 1.14 1.00 5.10 86.01 57.34 +D+0.750L+0.750S+0.5250E+H Dsgn. L = 10.00 ft 1 0.383 0.089 12.74 12.74 55.54 33.26 1.14 1.00 5.10 86.01 57.34 +0.60D+0.60W+0.60H Dsgn. L = 10.00 ft 1 0.176 0.041 5.84 5.84 55.54 33.26 1.14 1.00 2.34 86.01 57.34 03/01/2021 Steel Beam K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:L2 - AT REAR DOOR K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 Span # Summary of Moment ValuesLoad Combination Summary of Shear ValuesMax Stress Ratios M V Mmax -Mmax +Rm VnxMa Max Mnx/Omega Cb Va MaxMnx Vnx/OmegaSegment Length +0.60D+0.70E+0.60H Dsgn. L = 10.00 ft 1 0.176 0.041 5.84 5.84 55.54 33.26 1.14 1.00 2.34 86.01 57.34 . Location in SpanLoad CombinationMax. "-" Defl Location in SpanLoad Combination Span Max. "+" Defl Overall Maximum Deflections +D+S+H 1 0.0659 5.029 0.0000 0.000 . Load Combination Support 1 Support 2 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 5.495 5.495 Overall MINimum 1.600 1.600 +D+H 3.895 3.895 +D+L+H 3.895 3.895 +D+Lr+H 3.895 3.895 +D+S+H 5.495 5.495 +D+0.750Lr+0.750L+H 3.895 3.895 +D+0.750L+0.750S+H 5.095 5.095 +D+0.60W+H 3.895 3.895 +D+0.70E+H 3.895 3.895 +D+0.750Lr+0.750L+0.450W+H 3.895 3.895 +D+0.750L+0.750S+0.450W+H 5.095 5.095 +D+0.750L+0.750S+0.5250E+H 5.095 5.095 +0.60D+0.60W+0.60H 2.337 2.337 +0.60D+0.70E+0.60H 2.337 2.337 D Only 3.895 3.895 S Only 1.600 1.600 H Only 03/01/2021 Steel Beam K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:L3 LINTEL AT ELEVATOR K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 CODE REFERENCES Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : IBC 2018 Material Properties Analysis Method : ksi Bending Axis :Major Axis Bending Completely Unbraced Allowable Strength Design Fy : Steel Yield :50.0 ksi Beam Bracing :E: Modulus :29,000.0 .Service loads entered. Load Factors will be applied for calculations.Applied Loads Beam self weight calculated and added to loading Uniform Load : D = 0.420 k/ft, Tributary Width = 1.0 ft Point Load : D = 2.0, S = 3.0 k @ 2.0 ft .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.268 : 1 Load Combination +D+S+H Span # where maximum occurs Span # 1 Location of maximum on span 2.000 ft 3.360 k Mn / Omega : Allowable 21.870 k-ft Vn/Omega : Allowable W8x10Section used for this span Span # where maximum occurs Location of maximum on span Span # 1 Load Combination +D+S+H 26.826 k Section used for this span W8x10 Ma : Applied Maximum Shear Stress Ratio =0.125 : 1 0.000 ft 5.860 k-ft Va : Applied 0 <360 3050 Ratio =0 <600.0 Maximum Deflection Max Downward Transient Deflection 0.008 in 6,176Ratio =>=360 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.016 in Ratio =>=600. Max Upward Total Deflection 0.000 in .Maximum Forces & Stresses for Load Combinations Span # Summary of Moment ValuesLoad Combination Summary of Shear ValuesMax Stress Ratios M V Mmax -Mmax +Rm VnxMa Max Mnx/Omega Cb Va MaxMnx Vnx/OmegaSegment Length +D+H Dsgn. L = 4.00 ft 1 0.131 0.069 2.86 2.86 36.52 21.87 1.26 1.00 1.86 40.24 26.83 +D+L+H Dsgn. L = 4.00 ft 1 0.131 0.069 2.86 2.86 36.52 21.87 1.26 1.00 1.86 40.24 26.83 +D+Lr+H Dsgn. L = 4.00 ft 1 0.131 0.069 2.86 2.86 36.52 21.87 1.26 1.00 1.86 40.24 26.83 +D+S+H Dsgn. L = 4.00 ft 1 0.268 0.125 5.86 5.86 36.52 21.87 1.29 1.00 3.36 40.24 26.83 +D+0.750Lr+0.750L+H Dsgn. L = 4.00 ft 1 0.131 0.069 2.86 2.86 36.52 21.87 1.26 1.00 1.86 40.24 26.83 +D+0.750L+0.750S+H Dsgn. L = 4.00 ft 1 0.234 0.111 5.11 5.11 36.52 21.87 1.28 1.00 2.99 40.24 26.83 +D+0.60W+H Dsgn. L = 4.00 ft 1 0.131 0.069 2.86 2.86 36.52 21.87 1.26 1.00 1.86 40.24 26.83 +D+0.70E+H Dsgn. L = 4.00 ft 1 0.131 0.069 2.86 2.86 36.52 21.87 1.26 1.00 1.86 40.24 26.83 +D+0.750Lr+0.750L+0.450W+H Dsgn. L = 4.00 ft 1 0.131 0.069 2.86 2.86 36.52 21.87 1.26 1.00 1.86 40.24 26.83 +D+0.750L+0.750S+0.450W+H Dsgn. L = 4.00 ft 1 0.234 0.111 5.11 5.11 36.52 21.87 1.28 1.00 2.99 40.24 26.83 +D+0.750L+0.750S+0.5250E+H 03/01/2021 Steel Beam K. ENG, LLCLic. # : KW-06006083 DESCRIPTION:L3 LINTEL AT ELEVATOR K.ENG LLC KEN KARSTON S.E., P.E. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 File: 232 Main Aspen.ec6 Span # Summary of Moment ValuesLoad Combination Summary of Shear ValuesMax Stress Ratios M V Mmax -Mmax +Rm VnxMa Max Mnx/Omega Cb Va MaxMnx Vnx/OmegaSegment Length Dsgn. L = 4.00 ft 1 0.234 0.111 5.11 5.11 36.52 21.87 1.28 1.00 2.99 40.24 26.83 +0.60D+0.60W+0.60H Dsgn. L = 4.00 ft 1 0.078 0.042 1.72 1.72 36.52 21.87 1.26 1.00 1.12 40.24 26.83 +0.60D+0.70E+0.60H Dsgn. L = 4.00 ft 1 0.078 0.042 1.72 1.72 36.52 21.87 1.26 1.00 1.12 40.24 26.83 . Location in SpanLoad CombinationMax. "-" Defl Location in SpanLoad Combination Span Max. "+" Defl Overall Maximum Deflections +D+S+H 1 0.0157 2.011 0.0000 0.000 . Load Combination Support 1 Support 2 Vertical Reactions Support notation : Far left is #1 Values in KIPS Overall MAXimum 3.360 3.360 Overall MINimum 1.116 1.116 +D+H 1.860 1.860 +D+L+H 1.860 1.860 +D+Lr+H 1.860 1.860 +D+S+H 3.360 3.360 +D+0.750Lr+0.750L+H 1.860 1.860 +D+0.750L+0.750S+H 2.985 2.985 +D+0.60W+H 1.860 1.860 +D+0.70E+H 1.860 1.860 +D+0.750Lr+0.750L+0.450W+H 1.860 1.860 +D+0.750L+0.750S+0.450W+H 2.985 2.985 +D+0.750L+0.750S+0.5250E+H 2.985 2.985 +0.60D+0.60W+0.60H 1.116 1.116 +0.60D+0.70E+0.60H 1.116 1.116 D Only 1.860 1.860 S Only 1.500 1.500 H Only 03/01/2021 03/01/2021 03/01/2021 03/01/2021 03/01/2021 03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 14 ft 12 i n Y X 14 ft 2. 5 f t X Bars: 4 - #4 (@ ~7.83 in) Z Bars: 19 - #4 (@ ~8.97 in) Z X 2. 5 f t 12 in Y Z Design Detail Check Summary Ratio Check Provided Required Combination ----- Footing ----- 0.053 X Flexure (-Z) 1638 in·k 86.35 in·k 1.2D + 1.6S 0.053 X Flexure (+Z) 1638 in·k 86.35 in·k 1.2D + 1.6S 0.000 Z Flexure (-X) 364.4 in·k 0 in·k 1.4D 0.000 Z Flexure (+X) 364.4 in·k 0 in·k 1.4D 0.034 Shear (-Z) 113.9 k 3.93 k 1.2D + 1.6S 0.034 Shear (+Z) 113.9 k 3.93 k 1.2D + 1.6S 0.000 Shear (-X) 21.57 k 0 k 1.4D 0.000 Shear (+X) 21.57 k 0 k 1.4D 0.955 Min Steel Z 3.8 in² 3.63 in² 1.4D 0.810 Min Steel X 0.8 in² 0.65 in² 1.4D 0.110 Min Strain Z 0.0365 0.0040 1.4D 0.123 Min Strain X 0.0326 0.0040 1.4D 0.082 Punching Shear 89.98 psi 7.39 psi (1.2 + 0.2Sds)D + 0.2S + 1.0... ----- Stability ----- 0.320 Bearing Pressure 4000 psf 1278 psf (1.0 + 0.14Sds)D + 0.7Epx 0.000 Overturning-X Infinite 1.500 1.0D + 1.0S 0.387 Overturning-Z 3.874 1.500 (0.6 - 0.14Sds)D + 0.7Epx 0.000 Sliding-X Infinite 1.500 1.0D + 1.0S 0.000 Sliding-Z Infinite 1.500 1.0D + 1.0S 0.000 Uplift Infinite 1.500 1.0D + 1.0S Criteria Use basic criteria from common project settings Yes Building Code IBC 2015 Strength Load Combinations IBC 2015 (Strength) Stability Load Combinations ASCE 7-16 (ASD) Apply Sds Factor to Seismic Combinations for Ev Yes Sds (from ASCE 7) 0.25 Factor of Safety: Overturning 1.50 Factor of Safety: Sliding 1.50 Factor of Safety: Uplift 1.50 Perimeter Skin Friction 0 psf Additional Uplift Resistance 0 k Allowable Bearing Pressure 4000 psf Separate Allowable Pressure for Dead Only No Separate Allowable Pressure for Dead+Live Only No Separate Allowable Pressure for Wind/Seismic No Gross / Net (Allowable Bearing)Gross Friction Coefficient 0.40 Cohesion (@ soil interface)0 psf Passive Soil Resistance (Fixed)0 lb Calculate Depth-Dependent Passive Pressure No Additional Sliding Resistance 0 k Concrete Weight 150 lb/ft³ Parme beta (for biaxial)0.65 Include footing weight in strength bearing pressure Yes Include overburden in strength bearing pressure Yes Loads Summary (Service Loads) Load Set Name Source P Mx Mz Vx Vz Overburden New Load Set Dead 17.4 k 0 in·k 0 in·k 0 k 0 k 0 psf New Load Set Snow 4 k 0 in·k 0 in·k 0 k 0 k 0 psf New Load Set Earthquake (+X) 0 k 0 in·k 531 in·k 0 k 0 k 0 psf New Load Set Dead 0 k 0 in·k 0 in·k 0 k 0 k 300 psf Load Combination Factored Axial Factored Moment-X Factored Moment-Z Factored Shear-X Factored Shear-Z Factored Overburden Factored Footing Weight Mu +X Cantilever Mu -X Cantilever (k)(in·k)(in·k)(k)(k)(psf)(k)(in·k)(in·k) Set: New Load Set : 1.4D 24.3600004207.3500 Set: New Load Set : 1.2D + 1.6S 27.2800003606.300 Set: New Load Set : 1.2D + 0.5S 22.8800003606.300 Set: New Load Set : (1.2 - 0.2Sds)...20.81 0 531 0 0 344.9 6.04 0 0 Set: New Load Set : (1.2 + 0.2Sds...22.55 0 531 0 0 375.1 6.56 0 0 Set: New Load Set : 1.2D + 0.2S 21.6800003606.300 Set: New Load Set : (1.2 - 0.2Sds)...20.01 0 531 0 0 344.9 6.04 0 0 Set: New Load Set : (1.2 + 0.2Sds...21.75 0 531 0 0 375.1 6.56 0 0 Set: New Load Set : 1.2D 20.8800003606.300 Set: New Load Set : (0.9 - 0.2Sds)...14.79 0 531 0 0 254.9 4.46 0 0 Set: New Load Set : (0.9 + 0.2Sds...16.53 0 531 0 0 285.1 4.99 0 0 Set: New Load Set : 0.9D 15.6600002704.7300 Strength Check Results Summary QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 1 of 17 Wednesday 02/10/21 1:18 AM 8 - FOOTINGS UNDER SHEAR WALLS 03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Load Combination Mu +Z Cantilever Mu -Z Cantilever Vu +X Cantilever Vu -X Cantilever Vu +Z Cantilever Vu -Z Cantilever Vu Punching vu Punching Reqd dowel dev (footing) (in·k)(in·k)(k)(k)(k)(k)(k)(psi)(in) Set: New Load Set : 1.4D 85.69 85.69 0 0 3.89 3.89 0.99 0.33 19.17 Set: New Load Set : 1.2D + 1.6S 86.35 86.35 0 0 3.93 3.93 3.73 1.24 19.17 Set: New Load Set : 1.2D + 0.5S 77.48 77.48 0 0 3.52 3.52 1.75 0.58 19.17 Set: New Load Set : (1.2 - 0.2Sds)...71.99 71.99 0 0 3.27 3.27 1.17 7.37 19.17 Set: New Load Set : (1.2 + 0.2Sds...78.13 78.13 0 0 3.55 3.55 1.24 7.39 19.17 Set: New Load Set : 1.2D + 0.2S 75.06 75.06 0 0 3.41 3.41 1.21 0.4 19.17 Set: New Load Set : (1.2 - 0.2Sds)...70.37 70.37 0 0 3.2 3.2 0.81 7.25 19.17 Set: New Load Set : (1.2 + 0.2Sds...76.52 76.52 0 0 3.48 3.48 0.88 7.27 19.17 Set: New Load Set : 1.2D 73.45 73.45 0 0 3.34 3.34 0.85 0.28 19.17 Set: New Load Set : (0.9 - 0.2Sds)...52.01 52.01 0 0 2.36 2.36 0.6 7.18 19.17 Set: New Load Set : (0.9 + 0.2Sds...58.16 58.16 0 0 2.64 2.64 0.67 7.2 19.17 Set: New Load Set : 0.9D 55.09 55.09 0 0 2.5 2.5 0.64 0.21 19.17 Strength Check Results Summary (continued) Load Combination Factored Axial Factored Moment-X Factored Moment-Z Factored Shear-X Factored Shear-Z Factored Overburden Factored Footing Weight Max Applied Bearing Allowable Bearing (k)(in·k)(in·k)(k)(k)(psf)(k)(psf)(psf) Set: New Load Set : 1.0D + 1.0S 21.400003005.25981.4 4000 Set: New Load Set : (1.0 - 0.14Sd...16.79 0 371.7 0 0 289.5 5.07 1215 4000 Set: New Load Set : (1.0 + 0.14Sd...18.01 0 371.7 0 0 310.5 5.43 1278 4000 Set: New Load Set : 1.0D 17.400003005.25867.1 4000 Set: New Load Set : (1.0 - 0.105S...19.94 0 278.8 0 0 292.1 5.11 1213 4000 Set: New Load Set : (1.0 + 0.105S...20.86 0 278.8 0 0 307.9 5.39 1258 4000 Set: New Load Set : 1.0D + 0.75S 20.400003005.25952.9 4000 Set: New Load Set : (0.6 - 0.14Sd...9.83 0 371.7 0 0 169.5 2.97 869.9 4000 Set: New Load Set : (0.6 + 0.14Sd...11.05 0 371.7 0 0 190.5 3.33 928.5 4000 Set: New Load Set : 0.6D 10.4400001803.15520.3 4000 Load Combination Actual F.S. Overturning-X Actual F.S. Overturning-Z Required F.S. Overturning Actual F.S. Sliding-X Actual F.S. Sliding-Z Required F.S. Sliding Actual F.S. Uplift Required F.S. Uplift Set: New Load Set : 1.0D + 1.0S 1.#IO 1.#IO 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 - 0.14Sd...1.#IO 6.618 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 + 0.14Sd...1.#IO 7.100 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 1.0D 1.#IO 1.#IO 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 - 0.105S...1.#IO 9.808 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 + 0.105S...1.#IO 10.290 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 1.0D + 0.75S 1.#IO 1.#IO 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (0.6 - 0.14Sd...1.#IO 3.874 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (0.6 + 0.14Sd...1.#IO 4.356 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 0.6D 1.#IO 1.#IO 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Stability Check Results Summary QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 2 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Footing X-Direction Capacity 2.5 ft 12 i n Y Z a As fy 0.85 F'c bw 0.8 in²60000 psi 0.85 3000 psi 30 in 0.63 in = = = 1 0.850 F'c  4000 psi = xa1 / 0.63 in 0.850 / 0.74 in = = = General Section Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 22.3», 22.2)  1.0 normal weight concrete = Mn As fy da2 / - 0.90 0.8 in²60000 psi 8.75 in 0.63 in 2 / - 364.4 in·k = = = Vc 2 F'c bw d 0.750 21.0 3000 psi 30 in 8.75 in 21.57 k = = = Asmin 0.0018 60000 fy Ag 0.0018 60000 60000 psi 2.5 ft² 0.65 in² = = = t 0.003 d a 1 / 1 - 0.003 8.75 in 0.63 in 0.850 / 1 - 0.0326 = = = Capacity Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 7.5.3.1», 22.3», 22.2, 7.6.1.1, 22.5.5.1, 19.2.4, 21.2) t 1.0 12 inches or less cast below 3.00 inches - = e 1.0 bar not epoxy coated = s 0.80 bars are #6 or smaller =  1.0 normal weight concrete = s2 / 5.88 in 2 / 2.94 in = = cover db 2 / + 3 in 0.5 in 2 / + 3.25 in = = cb 2.94 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr + db 2.94 in 0.0 + 0.5 in 5.8750 = = ld 3. 40 fy F'c t e s 2.5 db 3. 40 60000 psi 1.0 3000 psi 1.0 1.0 0.80 2.5 0.5 in 13.15 in = = = Development (ACI 318-14 13.2.8.1», 25.4.2) Capacity Calcs QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 3 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Footing Z-Direction Capacity 14 ft 12 i n Y X a As fy 0.85 F'c bw 3.8 in²60000 psi 0.85 3000 psi 168 in 0.53 in = = = 1 0.850 F'c  4000 psi = xa1 / 0.53 in 0.850 / 0.63 in = = = General Section Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 22.3», 22.2)  1.0 normal weight concrete = Mn As fy da2 / - 0.90 3.8 in²60000 psi 8.25 in 0.53 in 2 / - 1638 in·k = = = Vc 2 F'c bw d 0.750 21.0 3000 psi 168 in 8.25 in 113.9 k = = = Asmin 0.0018 60000 fy Ag 0.0018 60000 60000 psi 14 ft² 3.63 in² = = = t 0.003 d a 1 / 1 - 0.003 8.25 in 0.53 in 0.850 / 1 - 0.0365 = = = Capacity Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 7.5.3.1», 22.3», 22.2, 7.6.1.1, 22.5.5.1, 19.2.4, 21.2) t 1.0 12 inches or less cast below 3.00 inches - = e 1.0 bar not epoxy coated = s 0.80 bars are #6 or smaller =  1.0 normal weight concrete = s2 / 8.5 in 2 / 4.25 in = = cover db 2 / + 3 in 0.5 in 2 / + 3.25 in = = cb 3.25 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr + db 3.25 in 0.0 + 0.5 in 6.50 = = ld 3. 40 fy F'c t e s 2.5 db 3. 40 60000 psi 1.0 3000 psi 1.0 1.0 0.80 2.5 0.5 in 13.15 in = = = Development (ACI 318-14 13.2.8.1», 25.4.2) Capacity Calcs (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 4 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Footing Punching Shear Capacity 14 ft 2. 5 f t 168 in 16 . 5 i n Z X s 20.0 corner column =  1.0 normal weight concrete = a vc 4F'c 4 1.0 3000 psi 219.1 psi = = = b vc 2 4  + F'c 2 4 21.0 + 1.0 3000 psi 120 psi = = = c vc 2 s d bo + F'c 2 20.0 8.5 in 352.5 in + 1.0 3000 psi 136 psi = = = vn vc 0.750 120 psi 89.98 psi = = = Punching Shear (ACI 318-14 13.3.3.1», 8.5.3.1.2», 22.6.5, 22.6.1.2, 21.2.1) vx 1 1 1 2 3. bzbx + - 1 1 1 2 3. 16.5 in 168 in + - 0.1728 = = = vz 1 1 1 2 3. bxbz + - 1 1 1 2 3. 168 in 16.5 in + - 0.6802 = = = Jx 5576 in 4 calculated from ACI 318 R8.4.2.2.3 ^ = Jz 4349940 in 4 calculated from ACI 318 R8.4.2.2.3 ^ = Values needed for check (ACI 318-14 8.4.4.2.2, 8.4.2.3.2, R8.4.4.2.3) Capacity Calcs (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 5 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Factored Loads Axial Force 27.28 k Moment X 0 in·k Moment Z 0 in·k Shear X 0 k Shear Z 0 k Overburden 360 psf Footing Weight 6.3 k Pedestal Weight 0 k Factored Loads Axial Force 27.28 k Moment X 0 in·k Moment Z 0 in·k Shear X 0 k Shear Z 0 k Overburden 360 psf Footing Weight 6.3 k Pedestal Weight 0 k Resultant = 42.82 k (factored) Resultant location (X,Z) = (0 ft, -0 ft) Max pressure (factored) = 1223 psf (Includes effects of overburden and footing weight) 1223 psf 1223 psf 1223 psf 1223 psf Z X Reinforcement Limits As 0.8 in²  Asmin 0.65 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) As 3.8 in²  Asmin 3.63 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) t 0.0326  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) t 0.0365  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) Footing Flexure 15.7 k 15.7 k Z X 0 k 0 k Z X Mz2 Rz2 dz2 0 lb 0 in 0 in·k = = = Mn 364.4 in·k  Mu 0 in·k = =  Z-Flexure (+X side) Mz1 Rz1 dz1 0 lb 0 in 0 in·k = = = Mn 364.4 in·k  Mu 0 in·k = =  Z-Flexure (-X side) Mx1 Rx1 dx1 15701 lb 5.5 in 86.35 in·k = = = Mn 1638 in·k  Mu 86.35 in·k = =  X-Flexure (+Z side) Mx2 Rx2 dx2 15701 lb 5.5 in 86.35 in·k = = = Mn 1638 in·k  Mu 86.35 in·k = =  X-Flexure (-Z side) Strength Checks [Load Set: New Load Set Combination: 1.2D + 1.6S] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 6 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Footing Shear 3.93 k 3.93 k Z X 0 k 0 k Z X Vx2 Rx4 0 lb 0 k = = = Vn 21.57 k  Vu 0 k = =  Shear (+X side) Vx1 Rx3 0 lb 0 k = = = Vn 21.57 k  Vu 0 k = =  Shear (-X side) Vz2 Rz4 3925 lb 3.93 k = = = Vn 113.9 k  Vu 3.93 k = =  Shear (+Z side) Vz1 Rz3 3925 lb 3.93 k = = = Vn 113.9 k  Vu 3.93 k = =  Shear (-Z side) Footing Punching Shear 23.55 k Z X Ppunching Ptotal Wp Pperimeter - + 27.28 k 0 k 23.55 k - + 3.73 k = = = vu Vubod vx Mux ez Jx vz Muz ex Jz + + = 3.73 k 352.5 in 8.5 in 0.1728 0 in·k 8.25 in 5576 in 4 ^ 0.6802 0 in·k 84 in 4349940 in 4 ^ + + = 1.24 psi = vn 89.98 psi  vu 1.24 psi = =  Punching Shear Check (ACI 318-14 8.5.1.1(d), R8.4.4.2.3) Strength Checks [Load Set: New Load Set Combination: 1.2D + 1.6S] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 7 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Factored Loads Axial Force 24.36 k Moment X 0 in·k Moment Z 0 in·k Shear X 0 k Shear Z 0 k Overburden 420 psf Footing Weight 7.35 k Pedestal Weight 0 k Factored Loads Axial Force 24.36 k Moment X 0 in·k Moment Z 0 in·k Shear X 0 k Shear Z 0 k Overburden 420 psf Footing Weight 7.35 k Pedestal Weight 0 k Resultant = 42.49 k (factored) Resultant location (X,Z) = (0 ft, -0 ft) Max pressure (factored) = 1214 psf (Includes effects of overburden and footing weight) 1214 psf 1214 psf 1214 psf 1214 psf Z X Reinforcement Limits As 0.8 in²  Asmin 0.65 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) As 3.8 in²  Asmin 3.63 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) t 0.0326  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) t 0.0365  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) Footing Flexure 15.58 k 15.58 k Z X 0 k 0 k Z X Mz2 Rz2 dz2 0 lb 0 in 0 in·k = = = Mn 364.4 in·k  Mu 0 in·k = =  Z-Flexure (+X side) Mz1 Rz1 dz1 0 lb 0 in 0 in·k = = = Mn 364.4 in·k  Mu 0 in·k = =  Z-Flexure (-X side) Mx1 Rx1 dx1 15580 lb 5.5 in 85.69 in·k = = = Mn 1638 in·k  Mu 85.69 in·k = =  X-Flexure (+Z side) Mx2 Rx2 dx2 15580 lb 5.5 in 85.69 in·k = = = Mn 1638 in·k  Mu 85.69 in·k = =  X-Flexure (-Z side) Strength Checks [Load Set: New Load Set Combination: 1.4D] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 8 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Footing Shear 3.89 k 3.89 k Z X 0 k 0 k Z X Vx2 Rx4 0 lb 0 k = = = Vn 21.57 k  Vu 0 k = =  Shear (+X side) Vx1 Rx3 0 lb 0 k = = = Vn 21.57 k  Vu 0 k = =  Shear (-X side) Vz2 Rz4 3895 lb 3.89 k = = = Vn 113.9 k  Vu 3.89 k = =  Shear (+Z side) Vz1 Rz3 3895 lb 3.89 k = = = Vn 113.9 k  Vu 3.89 k = =  Shear (-Z side) Footing Punching Shear 23.37 k Z X Ppunching Ptotal Wp Pperimeter - + 24.36 k 0 k 23.37 k - + 0.99 k = = = vu Vubod vx Mux ez Jx vz Muz ex Jz + + = 0.99 k 352.5 in 8.5 in 0.1728 0 in·k 8.25 in 5576 in 4 ^ 0.6802 0 in·k 84 in 4349940 in 4 ^ + + = 0.33 psi = vn 89.98 psi  vu 0.33 psi = =  Punching Shear Check (ACI 318-14 8.5.1.1(d), R8.4.4.2.3) Strength Checks [Load Set: New Load Set Combination: 1.4D] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 9 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Factored Loads Axial Force 22.55 k Moment X 0 in·k Moment Z 531 in·k Shear X 0 k Shear Z 0 k Overburden 375.1 psf Footing Weight 6.56 k Pedestal Weight 0 k Factored Loads Axial Force 22.55 k Moment X 0 in·k Moment Z 531 in·k Shear X 0 k Shear Z 0 k Overburden 375.1 psf Footing Weight 6.56 k Pedestal Weight 0 k Resultant = 38.74 k (factored) Resultant location (X,Z) = (1.14 ft, -0 ft) Max pressure (factored) = 1652 psf (Includes effects of overburden and footing weight) 561.9 psf 1652 psf 561.9 psf 1652 psf Z X Reinforcement Limits As 0.8 in²  Asmin 0.65 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) As 3.8 in²  Asmin 3.63 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) t 0.0326  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) t 0.0365  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) Footing Flexure 14.21 k 14.21 k Z X 0 k 0 k Z X Mz2 Rz2 dz2 0 lb 0 in 0 in·k = = = Mn 364.4 in·k  Mu 0 in·k = =  Z-Flexure (+X side) Mz1 Rz1 dz1 0 lb 0 in 0 in·k = = = Mn 364.4 in·k  Mu 0 in·k = =  Z-Flexure (-X side) Mx1 Rx1 dx1 14206 lb 5.5 in 78.13 in·k = = = Mn 1638 in·k  Mu 78.13 in·k = =  X-Flexure (+Z side) Mx2 Rx2 dx2 14206 lb 5.5 in 78.13 in·k = = = Mn 1638 in·k  Mu 78.13 in·k = =  X-Flexure (-Z side) Strength Checks [Load Set: New Load Set Combination: (1.2 + 0.2Sds)D + 0.2S + 1.0Epx] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 10 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Footing Shear 3.55 k 3.55 k Z X 0 k 0 k Z X Vx2 Rx4 0 lb 0 k = = = Vn 21.57 k  Vu 0 k = =  Shear (+X side) Vx1 Rx3 0 lb 0 k = = = Vn 21.57 k  Vu 0 k = =  Shear (-X side) Vz2 Rz4 3551 lb 3.55 k = = = Vn 113.9 k  Vu 3.55 k = =  Shear (+Z side) Vz1 Rz3 3551 lb 3.55 k = = = Vn 113.9 k  Vu 3.55 k = =  Shear (-Z side) Footing Punching Shear 21.31 k Z X Ppunching Ptotal Wp Pperimeter - + 22.55 k 0 k 21.31 k - + 1.24 k = = = vu Vubod vx Mux ez Jx vz Muz ex Jz + + = 1.24 k 352.5 in 8.5 in 0.1728 0 in·k 8.25 in 5576 in 4 ^ 0.6802 531 in·k 84 in 4349940 in 4 ^ + + = 7.39 psi = vn 89.98 psi  vu 7.39 psi = =  Punching Shear Check (ACI 318-14 8.5.1.1(d), R8.4.4.2.3) Strength Checks [Load Set: New Load Set Combination: (1.2 + 0.2Sds)D + 0.2S + 1.0Epx] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 11 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Forces Factored Loads Axial Force 18.01 k Moment X 0 in·k Moment Z 371.7 in·k Shear X 0 k Shear Z 0 k Overburden 310.5 psf Footing Weight 5.43 k Pedestal Weight 0 k Factored Loads Axial Force 18.01 k Moment X 0 in·k Moment Z 371.7 in·k Shear X 0 k Shear Z 0 k Overburden 310.5 psf Footing Weight 5.43 k Pedestal Weight 0 k Resultant = 31.42 k Resultant location (X,Z) = (0.99 ft, -0 ft) Max pressure = 1278 psf (Gross: Includes effects of footing weight and overburden) 517 psf 1278 psf 517 psf 1278 psf Z X qallow 4000 psf  qgross 1278 psf = =  Bearing Pressure Overturning 7 ft 7 ft 1. 2 5 f t 1. 2 5 f t Wf 5.43 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 310.5 psf 35 ft²9.33 ft² - 7.97 k = = = F.S. against overturning about X axis is infinite no applied moment OTMz Mz Vx tf Hp + + 371.7 in·k 0 k 12 in 0 in + + 371.7 in·k = = = RMz PWp + dx Wf Fob + bx 2 / + 18.01 k 0 k + 7 ft 5.43 k 7.97 k + 14 ft 2 / + 2639 in·k = = = FSOTZ RMzOTMz 2639 in·k 371.7 in·k 7.0998 = = = FSOTZ 7.0998  FSOTreqd 1.50 = =  Overturning Sliding Z X Wf 5.43 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 310.5 psf 35 ft²9.33 ft² - 7.97 k = = = Ffrict Cf Wf Wp Fob P + + + 0.40 5.43 k 0 k 7.97 k 18.01 k + + + 12.57 k = = = Fcoh cAftg 0 psf 35 ft² 0 k = = = FpassiveX 0 k = FpassiveZ 0 k = FresistX Ffrict Fcoh FpassiveX Faddl + + + 12.57 k 0 k 0 k 0 k + + + 12.57 k = = = FresistZ Ffrict Fcoh FpassiveZ Faddl + + + 12.57 k 0 k 0 k 0 k + + + 12.57 k = = = F.S. against sliding in X direction is infinite no applied force F.S. against sliding in Z direction is infinite no applied force Sliding Stability Checks [Load Set: New Load Set Combination: (1.0 + 0.14Sds)D + 0.7Epx] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 12 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Uplift Y X P 18.01 k = F.S. against uplift is infinite axial force is in compression Uplift Stability Checks [Load Set: New Load Set Combination: (1.0 + 0.14Sds)D + 0.7Epx] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 13 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Forces Factored Loads Axial Force 21.4 k Moment X 0 in·k Moment Z 0 in·k Shear X 0 k Shear Z 0 k Overburden 300 psf Footing Weight 5.25 k Pedestal Weight 0 k Factored Loads Axial Force 21.4 k Moment X 0 in·k Moment Z 0 in·k Shear X 0 k Shear Z 0 k Overburden 300 psf Footing Weight 5.25 k Pedestal Weight 0 k Resultant = 34.35 k Resultant location (X,Z) = (0 ft, -0 ft) Max pressure = 981.4 psf (Gross: Includes effects of footing weight and overburden) 981.4 psf 981.4 psf 981.4 psf 981.4 psf Z X qallow 4000 psf  qgross 981.4 psf = =  Bearing Pressure Overturning 7 ft 7 ft 1. 2 5 f t 1. 2 5 f t Wf 5.25 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 300 psf 35 ft²9.33 ft² - 7.7 k = = = F.S. against overturning about X axis is infinite no applied moment F.S. against overturning about Z axis is infinite no applied moment Overturning Sliding Z X Wf 5.25 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 300 psf 35 ft²9.33 ft² - 7.7 k = = = Ffrict Cf Wf Wp Fob P + + + 0.40 5.25 k 0 k 7.7 k 21.4 k + + + 13.74 k = = = Fcoh cAftg 0 psf 35 ft² 0 k = = = FpassiveX 0 k = FpassiveZ 0 k = FresistX Ffrict Fcoh FpassiveX Faddl + + + 13.74 k 0 k 0 k 0 k + + + 13.74 k = = = FresistZ Ffrict Fcoh FpassiveZ Faddl + + + 13.74 k 0 k 0 k 0 k + + + 13.74 k = = = F.S. against sliding in X direction is infinite no applied force F.S. against sliding in Z direction is infinite no applied force Sliding Stability Checks [Load Set: New Load Set Combination: 1.0D + 1.0S] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 14 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Uplift Y X P 21.4 k = F.S. against uplift is infinite axial force is in compression Uplift Stability Checks [Load Set: New Load Set Combination: 1.0D + 1.0S] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 15 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Forces Factored Loads Axial Force 9.83 k Moment X 0 in·k Moment Z 371.7 in·k Shear X 0 k Shear Z 0 k Overburden 169.5 psf Footing Weight 2.97 k Pedestal Weight 0 k Factored Loads Axial Force 9.83 k Moment X 0 in·k Moment Z 371.7 in·k Shear X 0 k Shear Z 0 k Overburden 169.5 psf Footing Weight 2.97 k Pedestal Weight 0 k Resultant = 17.14 k Resultant location (X,Z) = (1.81 ft, -0 ft) Max pressure = 869.9 psf (Gross: Includes effects of footing weight and overburden) 109.7 psf 869.9 psf 109.7 psf 869.9 psf Z X qallow 4000 psf  qgross 869.9 psf = =  Bearing Pressure Overturning 7 ft 7 ft 1. 2 5 f t 1. 2 5 f t Wf 2.97 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 169.5 psf 35 ft²9.33 ft² - 4.35 k = = = F.S. against overturning about X axis is infinite no applied moment OTMz Mz Vx tf Hp + + 371.7 in·k 0 k 12 in 0 in + + 371.7 in·k = = = RMz PWp + dx Wf Fob + bx 2 / + 9.83 k 0 k + 7 ft 2.97 k 4.35 k + 14 ft 2 / + 1440 in·k = = = FSOTZ RMzOTMz 1440 in·k 371.7 in·k 3.8742 = = = FSOTZ 3.8742  FSOTreqd 1.50 = =  Overturning Sliding Z X Wf 2.97 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 169.5 psf 35 ft²9.33 ft² - 4.35 k = = = Ffrict Cf Wf Wp Fob P + + + 0.40 2.97 k 0 k 4.35 k 9.83 k + + + 6.86 k = = = Fcoh cAftg 0 psf 35 ft² 0 k = = = FpassiveX 0 k = FpassiveZ 0 k = FresistX Ffrict Fcoh FpassiveX Faddl + + + 6.86 k 0 k 0 k 0 k + + + 6.86 k = = = FresistZ Ffrict Fcoh FpassiveZ Faddl + + + 6.86 k 0 k 0 k 0 k + + + 6.86 k = = = F.S. against sliding in X direction is infinite no applied force F.S. against sliding in Z direction is infinite no applied force Sliding Stability Checks [Load Set: New Load Set Combination: (0.6 - 0.14Sds)D + 0.7Epx] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 16 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW3 Uplift Y X P 9.83 k = F.S. against uplift is infinite axial force is in compression Uplift Stability Checks [Load Set: New Load Set Combination: (0.6 - 0.14Sds)D + 0.7Epx] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 17 of 17 Wednesday 02/10/21 1:18 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 21.6 ft 12 i n Y X 21.6 ft 3 f t X Bars: 4 - #4 (@ ~9.83 in) Z Bars: 28 - #4 (@ ~9.36 in) Z X3 f t 12 in Y Z Design Detail Check Summary Ratio Check Provided Required Combination ----- Footing ----- 0.151 X Flexure (-Z) 2418 in·k 364.2 in·k 1.4D 0.151 X Flexure (+Z) 2418 in·k 364.2 in·k 1.4D 0.171 Z Flexure (-X) 366.7 in·k 62.76 in·k 1.4D 0.175 Z Flexure (+X) 366.7 in·k 64.33 in·k (1.2 + 0.2Sds)D + 0.5L + 0.2... 0.122 Shear (-Z) 175.7 k 21.37 k 1.4D 0.122 Shear (+Z) 175.7 k 21.37 k 1.4D 0.137 Shear (-X) 25.88 k 3.55 k 1.4D 0.099 Shear (+X) 25.88 k 2.55 k (1.2 + 0.2Sds)D + 0.5L + 0.2... 1.000 Min Steel Z 5.6 in² 5.6 in² 1.4D 0.972 Min Steel X 0.8 in² 0.78 in² 1.4D 0.104 Min Strain Z 0.0384 0.0040 1.4D 0.101 Min Strain X 0.0397 0.0040 1.4D 0.274 Punching Shear 87.82 psi 24.06 psi (1.2 + 0.2Sds)D + 0.5L + 0.2... ----- Stability ----- 0.773 Bearing Pressure 4000 psf 3091 psf (1.0 + 0.14Sds)D + 0.7Epx 0.000 Overturning-X Infinite 1.500 1.0D + 1.0L 0.912 Overturning-Z 1.644 1.500 (0.6 - 0.14Sds)D + 0.7Epx 0.000 Sliding-X Infinite 1.500 1.0D + 1.0L 0.000 Sliding-Z Infinite 1.500 1.0D + 1.0L 0.000 Uplift Infinite 1.500 1.0D + 1.0L Criteria Use basic criteria from common project settings Yes Building Code IBC 2015 Strength Load Combinations IBC 2015 (Strength) Stability Load Combinations ASCE 7-16 (ASD) Apply Sds Factor to Seismic Combinations for Ev Yes Sds (from ASCE 7) 0.25 Factor of Safety: Overturning 1.50 Factor of Safety: Sliding 1.50 Factor of Safety: Uplift 1.50 Perimeter Skin Friction 0 psf Additional Uplift Resistance 0 k Allowable Bearing Pressure 4000 psf Separate Allowable Pressure for Dead Only No Separate Allowable Pressure for Dead+Live Only No Separate Allowable Pressure for Wind/Seismic No Gross / Net (Allowable Bearing)Gross Friction Coefficient 0.40 Cohesion (@ soil interface)0 psf Passive Soil Resistance (Fixed)0 lb Calculate Depth-Dependent Passive Pressure No Additional Sliding Resistance 0 k Concrete Weight 150 lb/ft³ Parme beta (for biaxial)0.65 Include footing weight in strength bearing pressure Yes Include overburden in strength bearing pressure Yes Loads Summary (Service Loads) Load Set Name Source P Mx Mz Vx Vz Overburden New Load Set Dead 45.1 k 0 in·k 0 in·k 0 k 0 k 0 psf New Load Set Snow 5.2 k 0 in·k 0 in·k 0 k 0 k 0 psf New Load Set Earthquake (+X) 0 k 0 in·k 5947 in·k 0 k 0 k 0 psf New Load Set Dead 0 k 0 in·k 0 in·k 0 k 0 k 750 psf New Load Set Dead 1.8 k 0 in·k 95 in·k 0 k 0 k 0 psf New Load Set Live 1.8 k 0 in·k 95 in·k 0 k 0 k 0 psf QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 1 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Load Combination Factored Axial Factored Moment-X Factored Moment-Z Factored Shear-X Factored Shear-Z Factored Overburden Factored Footing Weight Mu +X Cantilever Mu -X Cantilever (k)(in·k)(in·k)(k)(k)(psf)(k)(in·k)(in·k) Set: New Load Set : 1.4D 65.66 0 133 0 0 1050 13.61 34.06 62.76 Set: New Load Set : 1.2D + 1.6L +...61.76 0 266 0 0 900 11.66 31.5 54.54 Set: New Load Set : 1.2D + 1.6L 59.16 0 266 0 0 900 11.66 30.82 53.36 Set: New Load Set : 1.2D + 0.5L +...65.5 0 161.5 0 0 900 11.66 31.84 57.53 Set: New Load Set : 1.2D + 1.6S 64.6 0 114 0 0 900 11.66 31.32 57.69 Set: New Load Set : 1.2D + 0.5L +...59.78 0 161.5 0 0 900 11.66 30.37 54.88 Set: New Load Set : 1.2D + 0.5S 58.88 0 114 0 0 900 11.66 29.86 55.01 Set: New Load Set : (1.2 - 0.2Sds)...55.87 0 6104 0 0 862.3 11.18 62.49 0 Set: New Load Set : (1.2 + 0.2Sds...60.57 0 6113 0 0 937.6 12.15 64.33 0 Set: New Load Set : 1.2D + 0.5L +...58.22 0 161.5 0 0 900 11.66 29.97 54.15 Set: New Load Set : (1.2 - 0.2Sds)...54.83 0 6104 0 0 862.3 11.18 62.32 0 Set: New Load Set : (1.2 + 0.2Sds...59.53 0 6113 0 0 937.6 12.15 64.03 0 Set: New Load Set : 1.2D + 0.5L 57.18 0 161.5 0 0 900 11.66 29.7 53.67 Set: New Load Set : (1.2 - 0.2Sds)...54.97 0 6056 0 0 862.3 11.18 61.99 0 Set: New Load Set : (1.2 + 0.2Sds...59.67 0 6066 0 0 937.6 12.15 63.84 0 Set: New Load Set : 1.2D + 0.2S 57.32 0 114 0 0 900 11.66 29.46 54.28 Set: New Load Set : (1.2 - 0.2Sds)...53.93 0 6056 0 0 862.3 11.18 61.82 0 Set: New Load Set : (1.2 + 0.2Sds...58.63 0 6066 0 0 937.6 12.15 63.54 0 Set: New Load Set : 1.2D 56.28 0 114 0 0 900 11.66 29.2 53.79 Set: New Load Set : (0.9 - 0.2Sds)...39.86 0 6028 0 0 637.3 8.26 61.5 0 Set: New Load Set : (0.9 + 0.2Sds...44.56 0 6037 0 0 712.7 9.24 60.28 0 Set: New Load Set : 0.9D 42.21 0 85.5 0 0 675 8.75 21.9 40.34 Load Combination Mu +Z Cantilever Mu -Z Cantilever Vu +X Cantilever Vu -X Cantilever Vu +Z Cantilever Vu -Z Cantilever Vu Punching vu Punching Reqd dowel dev (footing) (in·k)(in·k)(k)(k)(k)(k)(k)(psi)(in) Set: New Load Set : 1.4D 364.2 364.2 1.34 3.55 21.37 21.37 8.72 2.48 19.17 Set: New Load Set : 1.2D + 1.6L +...327.1 327.1 1.24 3.08 19.19 19.19 10.59 3.39 19.17 Set: New Load Set : 1.2D + 1.6L 320 320 1.21 3.02 18.77 18.77 9.1 3.05 19.17 Set: New Load Set : 1.2D + 0.5L +...337.2 337.2 1.25 3.25 19.79 19.79 12.76 3.51 19.17 Set: New Load Set : 1.2D + 1.6S 334.8 334.8 1.23 3.26 19.64 19.64 12.25 3.22 19.17 Set: New Load Set : 1.2D + 0.5L +...321.7 321.7 1.19 3.1 18.87 18.87 9.47 2.75 19.17 Set: New Load Set : 1.2D + 0.5S 319.2 319.2 1.17 3.11 18.73 18.73 8.97 2.47 19.17 Set: New Load Set : (1.2 - 0.2Sds)...304.4 304.4 2.48 0 17.86 17.86 7.8 23.94 19.17 Set: New Load Set : (1.2 + 0.2Sds...330.5 330.5 2.55 0 19.39 19.39 8.2 24.06 19.17 Set: New Load Set : 1.2D + 0.5L +...317.4 317.4 1.18 3.06 18.62 18.62 8.58 2.55 19.17 Set: New Load Set : (1.2 - 0.2Sds)...301.5 301.5 2.48 0 17.69 17.69 7.22 23.81 19.17 Set: New Load Set : (1.2 + 0.2Sds...327.6 327.6 2.54 0 19.22 19.22 7.62 23.93 19.17 Set: New Load Set : 1.2D + 0.5L 314.6 314.6 1.17 3.04 18.46 18.46 7.98 2.41 19.17 Set: New Load Set : (1.2 - 0.2Sds)...301.9 301.9 2.46 0 17.71 17.71 7.28 23.65 19.17 Set: New Load Set : (1.2 + 0.2Sds...328 328 2.54 0 19.25 19.25 7.69 23.77 19.17 Set: New Load Set : 1.2D + 0.2S 315 315 1.16 3.07 18.48 18.48 8.07 2.26 19.17 Set: New Load Set : (1.2 - 0.2Sds)...299.1 299.1 2.46 0 17.55 17.55 6.71 23.52 19.17 Set: New Load Set : (1.2 + 0.2Sds...325.2 325.2 2.52 0 19.08 19.08 7.11 23.64 19.17 Set: New Load Set : 1.2D 312.1 312.1 1.15 3.04 18.31 18.31 7.47 2.12 19.17 Set: New Load Set : (0.9 - 0.2Sds)...221 221 2.45 0 12.97 12.97 5.76 23.2 19.17 Set: New Load Set : (0.9 + 0.2Sds...247.2 247.2 2.4 0 14.5 14.5 6.01 23.29 19.17 Set: New Load Set : 0.9D 234.1 234.1 0.86 2.28 13.74 13.74 5.61 1.59 19.17 Strength Check Results Summary Load Combination Factored Axial Factored Moment-X Factored Moment-Z Factored Shear-X Factored Shear-Z Factored Overburden Factored Footing Weight Max Applied Bearing Allowable Bearing (k)(in·k)(in·k)(k)(k)(psf)(k)(psf)(psf) Set: New Load Set : 1.0D + 1.0L 48.7 0 190 0 0 750 9.72 1614 4000 Set: New Load Set : 1.0D + 1.0S 52.1 0 95 0 0 750 9.72 1631 4000 Set: New Load Set : (1.0 - 0.14Sd...45.25 0 4255 0 0 723.6 9.38 2988 4000 Set: New Load Set : (1.0 + 0.14Sd...48.55 0 4261 0 0 776.4 10.06 3091 4000 Set: New Load Set : 1.0D 46.9 0 95 0 0 750 9.72 1547 4000 Set: New Load Set : 1.0D + 0.75L 48.25 0 166.3 0 0 750 9.72 1598 4000 Set: New Load Set : (1.0 - 0.105S...50.91 0 3286 0 0 730.2 9.46 2732 4000 Set: New Load Set : (1.0 + 0.105S...53.39 0 3291 0 0 769.8 9.98 2814 4000 Set: New Load Set : 1.0D + 0.75L ...52.15 0 166.3 0 0 750 9.72 1662 4000 Set: New Load Set : (0.6 - 0.14Sd...26.49 0 4217 0 0 423.6 5.49 2858 4000 Set: New Load Set : (0.6 + 0.14Sd...29.79 0 4223 0 0 476.4 6.17 2754 4000 Set: New Load Set : 0.6D 28.14 0 57 0 0 450 5.83 928.2 4000 Load Combination Actual F.S. Overturning-X Actual F.S. Overturning-Z Required F.S. Overturning Actual F.S. Sliding-X Actual F.S. Sliding-Z Required F.S. Sliding Actual F.S. Uplift Required F.S. Uplift Set: New Load Set : 1.0D + 1.0L 1.#IO 65.796 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 1.0D + 1.0S 1.#IO 136.146 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 - 0.14Sd...1.#IO 2.783 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 + 0.14Sd...1.#IO 2.981 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 1.0D 1.#IO 129.182 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 1.0D + 0.75L 1.#IO 74.852 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 - 0.105S...1.#IO 3.840 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 + 0.105S...1.#IO 4.030 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 1.0D + 0.75L ...1.#IO 77.836 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (0.6 - 0.14Sd...1.#IO 1.644 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (0.6 + 0.14Sd...1.#IO 1.846 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 0.6D 1.#IO 129.182 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Stability Check Results Summary QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 2 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Footing X-Direction Capacity 3 ft 12 i n Y Z a As fy 0.85 F'c bw 0.8 in²60000 psi 0.85 3000 psi 36 in 0.52 in = = = 1 0.850 F'c  4000 psi = xa1 / 0.52 in 0.850 / 0.62 in = = = General Section Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 22.3», 22.2)  1.0 normal weight concrete = Mn As fy da2 / - 0.90 0.8 in²60000 psi 8.75 in 0.52 in 2 / - 366.7 in·k = = = Vc 2 F'c bw d 0.750 21.0 3000 psi 36 in 8.75 in 25.88 k = = = Asmin 0.0018 60000 fy Ag 0.0018 60000 60000 psi 3 ft² 0.78 in² = = = t 0.003 d a 1 / 1 - 0.003 8.75 in 0.52 in 0.850 / 1 - 0.0397 = = = Capacity Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 7.5.3.1», 22.3», 22.2, 7.6.1.1, 22.5.5.1, 19.2.4, 21.2) t 1.0 12 inches or less cast below 3.00 inches - = e 1.0 bar not epoxy coated = s 0.80 bars are #6 or smaller =  1.0 normal weight concrete = s2 / 7.38 in 2 / 3.69 in = = cover db 2 / + 3 in 0.5 in 2 / + 3.25 in = = cb 3.25 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr + db 3.25 in 0.0 + 0.5 in 6.50 = = ld 3. 40 fy F'c t e s 2.5 db 3. 40 60000 psi 1.0 3000 psi 1.0 1.0 0.80 2.5 0.5 in 13.15 in = = = Development (ACI 318-14 13.2.8.1», 25.4.2) Capacity Calcs QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 3 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Footing Z-Direction Capacity 21.6 ft 12 i n Y X a As fy 0.85 F'c bw 5.6 in²60000 psi 0.85 3000 psi 259.2 in 0.51 in = = = 1 0.850 F'c  4000 psi = xa1 / 0.51 in 0.850 / 0.6 in = = = General Section Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 22.3», 22.2)  1.0 normal weight concrete = Mn As fy da2 / - 0.90 5.6 in²60000 psi 8.25 in 0.51 in 2 / - 2418 in·k = = = Vc 2 F'c bw d 0.750 21.0 3000 psi 259.2 in 8.25 in 175.7 k = = = Asmin 0.0018 60000 fy Ag 0.0018 60000 60000 psi 21.6 ft² 5.6 in² = = = t 0.003 d a 1 / 1 - 0.003 8.25 in 0.51 in 0.850 / 1 - 0.0384 = = = Capacity Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 7.5.3.1», 22.3», 22.2, 7.6.1.1, 22.5.5.1, 19.2.4, 21.2) t 1.0 12 inches or less cast below 3.00 inches - = e 1.0 bar not epoxy coated = s 0.80 bars are #6 or smaller =  1.0 normal weight concrete = s2 / 9.03 in 2 / 4.51 in = = cover db 2 / + 3 in 0.5 in 2 / + 3.25 in = = cb 3.25 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr + db 3.25 in 0.0 + 0.5 in 6.50 = = ld 3. 40 fy F'c t e s 2.5 db 3. 40 60000 psi 1.0 3000 psi 1.0 1.0 0.80 2.5 0.5 in 13.15 in = = = Development (ACI 318-14 13.2.8.1», 25.4.2) Capacity Calcs (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 4 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Footing Punching Shear Capacity 21.6 ft 3 f t 240.5 in 16 . 5 i n Z X s 40.0 interior column =  1.0 normal weight concrete = a vc 4F'c 4 1.0 3000 psi 219.1 psi = = = b vc 2 4  + F'c 2 4 29.0 + 1.0 3000 psi 117.1 psi = = = c vc 2 s d bo + F'c 2 40.0 8.5 in 514 in + 1.0 3000 psi 145.8 psi = = = vn vc 0.750 117.1 psi 87.82 psi = = = Punching Shear (ACI 318-14 13.3.3.1», 8.5.3.1.2», 22.6.5, 22.6.1.2, 21.2.1) vx 1 1 1 2 3. bzbx + - 1 1 1 2 3. 16.5 in 240.5 in + - 0.1487 = = = vz 1 1 1 2 3. bxbz + - 1 1 1 2 3. 240.5 in 16.5 in + - 0.7179 = = = Jx 286326 in 4 calculated from ACI 318 R8.4.2.2.3 ^ = Jz 23787319 in 4 calculated from ACI 318 R8.4.2.2.3 ^ = Values needed for check (ACI 318-14 8.4.4.2.2, 8.4.2.3.2, R8.4.4.2.3) Capacity Calcs (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 5 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Factored Loads Axial Force 65.66 k Moment X 0 in·k Moment Z 133 in·k Shear X 0 k Shear Z 0 k Overburden 1050 psf Footing Weight 13.61 k Pedestal Weight 0 k Factored Loads Axial Force 65.66 k Moment X 0 in·k Moment Z 133 in·k Shear X 0 k Shear Z 0 k Overburden 1050 psf Footing Weight 13.61 k Pedestal Weight 0 k Resultant = 133.8 k (factored) Resultant location (X,Z) = (0.18 ft, -0 ft) Max pressure (factored) = 2166 psf (Includes effects of overburden and footing weight) 1963 psf 2166 psf 1963 psf 2166 psf Z X Reinforcement Limits As 0.8 in²  Asmin 0.78 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) As 5.6 in²  Asmin 5.6 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) t 0.0397  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) t 0.0384  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) Footing Flexure 52.02 k 52.02 k Z X 7.87 k 6.07 k Z X Mz2 Rz2 dz2 6065 lb 5.62 in 34.06 in·k = = = Mn 366.7 in·k  Mu 34.06 in·k = =  Z-Flexure (+X side) Mz1 Rz1 dz1 7865 lb 7.98 in 62.76 in·k = = = Mn 366.7 in·k  Mu 62.76 in·k = =  Z-Flexure (-X side) Mx1 Rx1 dx1 52023 lb 7 in 364.2 in·k = = = Mn 2418 in·k  Mu 364.2 in·k = =  X-Flexure (+Z side) Mx2 Rx2 dx2 52023 lb 7 in 364.2 in·k = = = Mn 2418 in·k  Mu 364.2 in·k = =  X-Flexure (-Z side) Strength Checks [Load Set: New Load Set Combination: 1.4D] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 6 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Footing Shear 21.37 k 21.37 k Z X 3.55 k 1.34 k Z X Vx2 Rx4 1339 lb 1.34 k = = = Vn 25.88 k  Vu 1.34 k = =  Shear (+X side) Vx1 Rx3 3551 lb 3.55 k = = = Vn 25.88 k  Vu 3.55 k = =  Shear (-X side) Vz2 Rz4 21367 lb 21.37 k = = = Vn 175.7 k  Vu 21.37 k = =  Shear (+Z side) Vz1 Rz3 21367 lb 21.37 k = = = Vn 175.7 k  Vu 21.37 k = =  Shear (-Z side) Footing Punching Shear 56.94 k Z X Ppunching Ptotal Wp Pperimeter - + 65.66 k 0 k 56.94 k - + 8.72 k = = = vu Vubod vx Mux ez Jx vz Muz ex Jz + + = 8.72 k 514 in 8.5 in 0.1487 0 in·k 8.25 in 286326 in 4 ^ 0.7179 133 in·k 120.3 in 23787319 in 4 ^ + + = 2.48 psi = vn 87.82 psi  vu 2.48 psi = =  Punching Shear Check (ACI 318-14 8.5.1.1(d), R8.4.4.2.3) Strength Checks [Load Set: New Load Set Combination: 1.4D] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 7 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Factored Loads Axial Force 60.57 k Moment X 0 in·k Moment Z 6113 in·k Shear X 0 k Shear Z 0 k Overburden 937.6 psf Footing Weight 12.15 k Pedestal Weight 0 k Factored Loads Axial Force 60.57 k Moment X 0 in·k Moment Z 6113 in·k Shear X 0 k Shear Z 0 k Overburden 937.6 psf Footing Weight 12.15 k Pedestal Weight 0 k Resultant = 121.4 k (factored) Resultant location (X,Z) = (4.3 ft, -0 ft) Max pressure (factored) = 4151 psf (Includes effects of overburden and footing weight) 0 psf 4151 psf 0 psf 4151 psf Z X Reinforcement Limits As 0.8 in²  Asmin 0.78 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) As 5.6 in²  Asmin 5.6 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) t 0.0397  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) t 0.0384  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) Footing Flexure 47.21 k 47.21 k Z X 0 k 11.37 k Z X Mz2 Rz2 dz2 11369 lb 5.66 in 64.33 in·k = = = Mn 366.7 in·k  Mu 64.33 in·k = =  Z-Flexure (+X side) Mz1 Rz1 dz1 0 lb 0 in 0 in·k = = = Mn 366.7 in·k  Mu 0 in·k = =  Z-Flexure (-X side) Mx1 Rx1 dx1 47211 lb 7 in 330.5 in·k = = = Mn 2418 in·k  Mu 330.5 in·k = =  X-Flexure (+Z side) Mx2 Rx2 dx2 47211 lb 7 in 330.5 in·k = = = Mn 2418 in·k  Mu 330.5 in·k = =  X-Flexure (-Z side) Strength Checks [Load Set: New Load Set Combination: (1.2 + 0.2Sds)D + 0.5L + 0.2S + 1.0Epx] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 8 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Footing Shear 19.39 k 19.39 k Z X 0 k 2.55 k Z X Vx2 Rx4 2555 lb 2.55 k = = = Vn 25.88 k  Vu 2.55 k = =  Shear (+X side) Vx1 Rx3 0 lb 0 k = = = Vn 25.88 k  Vu 0 k = =  Shear (-X side) Vz2 Rz4 19390 lb 19.39 k = = = Vn 175.7 k  Vu 19.39 k = =  Shear (+Z side) Vz1 Rz3 19390 lb 19.39 k = = = Vn 175.7 k  Vu 19.39 k = =  Shear (-Z side) Footing Punching Shear 52.37 k Z X Ppunching Ptotal Wp Pperimeter - + 60.57 k 0 k 52.37 k - + 8.2 k = = = vu Vubod vx Mux ez Jx vz Muz ex Jz + + = 8.2 k 514 in 8.5 in 0.1487 0 in·k 8.25 in 286326 in 4 ^ 0.7179 6113 in·k 120.3 in 23787319 in 4 ^ + + = 24.06 psi = vn 87.82 psi  vu 24.06 psi = =  Punching Shear Check (ACI 318-14 8.5.1.1(d), R8.4.4.2.3) Strength Checks [Load Set: New Load Set Combination: (1.2 + 0.2Sds)D + 0.5L + 0.2S + 1.0Epx] (cont QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 9 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Forces Factored Loads Axial Force 48.55 k Moment X 0 in·k Moment Z 4261 in·k Shear X 0 k Shear Z 0 k Overburden 776.4 psf Footing Weight 10.06 k Pedestal Weight 0 k Factored Loads Axial Force 48.55 k Moment X 0 in·k Moment Z 4261 in·k Shear X 0 k Shear Z 0 k Overburden 776.4 psf Footing Weight 10.06 k Pedestal Weight 0 k Resultant = 98.91 k Resultant location (X,Z) = (3.69 ft, -0 ft) Max pressure = 3091 psf (Gross: Includes effects of footing weight and overburden) 0 psf 3091 psf 0 psf 3091 psf Z X qallow 4000 psf  qgross 3091 psf = =  Bearing Pressure Overturning 11 ft 10.6 ft1. 5 f t 1. 5 f t Wf 10.06 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 776.4 psf 64.8 ft²12.89 ft² - 40.3 k = = = F.S. against overturning about X axis is infinite no applied moment OTMz Mz Vx tf Hp + + 4261 in·k 0 k 12 in 0 in + + 4261 in·k = = = RMz PWp + dx Wf Fob + bx 2 / + 48.55 k 0 k + 10.6 ft 10.06 k 40.3 k + 21.6 ft 2 / + 12704 in·k = = = FSOTZ RMzOTMz 12704 in·k 4261 in·k 2.9812 = = = FSOTZ 2.9812  FSOTreqd 1.50 = =  Overturning Sliding Z X Wf 10.06 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 776.4 psf 64.8 ft²12.89 ft² - 40.3 k = = = Ffrict Cf Wf Wp Fob P + + + 0.40 10.06 k 0 k 40.3 k 48.55 k + + + 39.56 k = = = Fcoh cAftg 0 psf 64.8 ft² 0 k = = = FpassiveX 0 k = FpassiveZ 0 k = FresistX Ffrict Fcoh FpassiveX Faddl + + + 39.56 k 0 k 0 k 0 k + + + 39.56 k = = = FresistZ Ffrict Fcoh FpassiveZ Faddl + + + 39.56 k 0 k 0 k 0 k + + + 39.56 k = = = F.S. against sliding in X direction is infinite no applied force F.S. against sliding in Z direction is infinite no applied force Sliding Stability Checks [Load Set: New Load Set Combination: (1.0 + 0.14Sds)D + 0.7Epx] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 10 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Uplift Y X P 48.55 k = F.S. against uplift is infinite axial force is in compression Uplift Stability Checks [Load Set: New Load Set Combination: (1.0 + 0.14Sds)D + 0.7Epx] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 11 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Forces Factored Loads Axial Force 48.7 k Moment X 0 in·k Moment Z 190 in·k Shear X 0 k Shear Z 0 k Overburden 750 psf Footing Weight 9.72 k Pedestal Weight 0 k Factored Loads Axial Force 48.7 k Moment X 0 in·k Moment Z 190 in·k Shear X 0 k Shear Z 0 k Overburden 750 psf Footing Weight 9.72 k Pedestal Weight 0 k Resultant = 97.35 k Resultant location (X,Z) = (0.26 ft, -0 ft) Max pressure = 1614 psf (Gross: Includes effects of footing weight and overburden) 1391 psf 1614 psf 1391 psf 1614 psf Z X qallow 4000 psf  qgross 1614 psf = =  Bearing Pressure Overturning 11 ft 10.6 ft1. 5 f t 1. 5 f t Wf 9.72 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 750 psf 64.8 ft²12.89 ft² - 38.93 k = = = F.S. against overturning about X axis is infinite no applied moment OTMz Mz Vx tf Hp + + 190 in·k 0 k 12 in 0 in + + 190 in·k = = = RMz PWp + dx Wf Fob + bx 2 / + 48.7 k 0 k + 10.6 ft 9.72 k 38.93 k + 21.6 ft 2 / + 12501 in·k = = = FSOTZ RMzOTMz 12501 in·k 190 in·k 65.7965 = = = FSOTZ 65.7965  FSOTreqd 1.50 = =  Overturning Sliding Z X Wf 9.72 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 750 psf 64.8 ft²12.89 ft² - 38.93 k = = = Ffrict Cf Wf Wp Fob P + + + 0.40 9.72 k 0 k 38.93 k 48.7 k + + + 38.94 k = = = Fcoh cAftg 0 psf 64.8 ft² 0 k = = = FpassiveX 0 k = FpassiveZ 0 k = FresistX Ffrict Fcoh FpassiveX Faddl + + + 38.94 k 0 k 0 k 0 k + + + 38.94 k = = = FresistZ Ffrict Fcoh FpassiveZ Faddl + + + 38.94 k 0 k 0 k 0 k + + + 38.94 k = = = F.S. against sliding in X direction is infinite no applied force F.S. against sliding in Z direction is infinite no applied force Sliding Stability Checks [Load Set: New Load Set Combination: 1.0D + 1.0L] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 12 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Uplift Y X P 48.7 k = F.S. against uplift is infinite axial force is in compression Uplift Stability Checks [Load Set: New Load Set Combination: 1.0D + 1.0L] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 13 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Forces Factored Loads Axial Force 26.49 k Moment X 0 in·k Moment Z 4217 in·k Shear X 0 k Shear Z 0 k Overburden 423.6 psf Footing Weight 5.49 k Pedestal Weight 0 k Factored Loads Axial Force 26.49 k Moment X 0 in·k Moment Z 4217 in·k Shear X 0 k Shear Z 0 k Overburden 423.6 psf Footing Weight 5.49 k Pedestal Weight 0 k Resultant = 53.97 k Resultant location (X,Z) = (6.61 ft, -0 ft) Max pressure = 2858 psf (Gross: Includes effects of footing weight and overburden) 0 psf 2858 psf 0 psf 2858 psf Z X qallow 4000 psf  qgross 2858 psf = =  Bearing Pressure Overturning 11 ft 10.6 ft1. 5 f t 1. 5 f t Wf 5.49 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 423.6 psf 64.8 ft²12.89 ft² - 21.99 k = = = F.S. against overturning about X axis is infinite no applied moment OTMz Mz Vx tf Hp + + 4217 in·k 0 k 12 in 0 in + + 4217 in·k = = = RMz PWp + dx Wf Fob + bx 2 / + 26.49 k 0 k + 10.6 ft 5.49 k 21.99 k + 21.6 ft 2 / + 6932 in·k = = = FSOTZ RMzOTMz 6932 in·k 4217 in·k 1.6440 = = = FSOTZ 1.6440  FSOTreqd 1.50 = =  Overturning Sliding Z X Wf 5.49 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 423.6 psf 64.8 ft²12.89 ft² - 21.99 k = = = Ffrict Cf Wf Wp Fob P + + + 0.40 5.49 k 0 k 21.99 k 26.49 k + + + 21.59 k = = = Fcoh cAftg 0 psf 64.8 ft² 0 k = = = FpassiveX 0 k = FpassiveZ 0 k = FresistX Ffrict Fcoh FpassiveX Faddl + + + 21.59 k 0 k 0 k 0 k + + + 21.59 k = = = FresistZ Ffrict Fcoh FpassiveZ Faddl + + + 21.59 k 0 k 0 k 0 k + + + 21.59 k = = = F.S. against sliding in X direction is infinite no applied force F.S. against sliding in Z direction is infinite no applied force Sliding Stability Checks [Load Set: New Load Set Combination: (0.6 - 0.14Sds)D + 0.7Epx] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 14 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW4 Uplift Y X P 26.49 k = F.S. against uplift is infinite axial force is in compression Uplift Stability Checks [Load Set: New Load Set Combination: (0.6 - 0.14Sds)D + 0.7Epx] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 15 of 15 Wednesday 02/10/21 1:17 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 15.67 ft 12 i n Y X 15.67 ft 6. 5 f t X Bars: 8 - #5 (@ ~10.2 in) Z Bars: 18 - #5 (@ ~10.67 in) Z X 6. 5 f t 12 in Y Z Design Detail Check Summary Ratio Check Provided Required Combination ----- Footing ----- 0.666 X Flexure (-Z) 2324 in·k 1549 in·k 1.2D + 1.6L + 0.5S 0.666 X Flexure (+Z) 2324 in·k 1549 in·k 1.2D + 1.6L + 0.5S 0.027 Z Flexure (-X) 1113 in·k 30.52 in·k 1.2D + 1.6L + 0.5S 0.012 Z Flexure (+X) 1113 in·k 13.33 in·k 1.4D 0.558 Shear (-Z) 124.6 k 69.49 k 1.2D + 1.6L + 0.5S 0.558 Shear (+Z) 124.6 k 69.49 k 1.2D + 1.6L + 0.5S 0.000 Shear (-X) 55.67 k 0 k 1.4D 0.000 Shear (+X) 55.67 k 0 k 1.4D 0.728 Min Steel Z 5.58 in² 4.06 in² 1.4D 0.679 Min Steel X 2.48 in² 1.68 in² 1.4D 0.151 Min Strain Z 0.0264 0.0040 1.4D 0.150 Min Strain X 0.0266 0.0040 1.4D 0.628 Punching Shear 91.49 psi 57.49 psi 1.2D + 1.6L + 0.5S ----- Stability ----- 0.678 Bearing Pressure 4000 psf 2711 psf (1.0 + 0.105Sds)D + 0.75L + ... 0.000 Overturning-X Infinite 1.500 1.0D + 1.0L 0.316 Overturning-Z 4.740 1.500 (0.6 - 0.14Sds)D + 0.7Epx 0.000 Sliding-X Infinite 1.500 1.0D + 1.0L 0.000 Sliding-Z Infinite 1.500 1.0D + 1.0L 0.000 Uplift Infinite 1.500 1.0D + 1.0L Criteria Use basic criteria from common project settings Yes Building Code IBC 2015 Strength Load Combinations IBC 2015 (Strength) Stability Load Combinations ASCE 7-16 (ASD) Apply Sds Factor to Seismic Combinations for Ev Yes Sds (from ASCE 7) 0.25 Factor of Safety: Overturning 1.50 Factor of Safety: Sliding 1.50 Factor of Safety: Uplift 1.50 Perimeter Skin Friction 0 psf Additional Uplift Resistance 0 k Allowable Bearing Pressure 4000 psf Separate Allowable Pressure for Dead Only No Separate Allowable Pressure for Dead+Live Only No Separate Allowable Pressure for Wind/Seismic No Gross / Net (Allowable Bearing)Gross Friction Coefficient 0.40 Cohesion (@ soil interface)0 psf Passive Soil Resistance (Fixed)0 lb Calculate Depth-Dependent Passive Pressure No Additional Sliding Resistance 0 k Concrete Weight 150 lb/ft³ Parme beta (for biaxial)0.65 Include footing weight in strength bearing pressure Yes Include overburden in strength bearing pressure Yes Loads Summary (Service Loads) Load Set Name Source P Mx Mz Vx Vz Overburden New Load Set Dead 47.8 k 0 in·k -1503 in·k 0 k 0 k 0 psf New Load Set Live 18 k 0 in·k -802 in·k 0 k 0 k 0 psf New Load Set Snow 10 k 0 in·k -761 in·k 0 k 0 k 0 psf New Load Set Earthquake (+X) 0 k 0 in·k -1124 in·k 0 k 0 k 0 psf New Load Set Dead 0 k 0 in·k 0 in·k 0 k 0 k 925 psf QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 1 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Load Combination Factored Axial Factored Moment-X Factored Moment-Z Factored Shear-X Factored Shear-Z Factored Overburden Factored Footing Weight Mu +X Cantilever Mu -X Cantilever (k)(in·k)(in·k)(k)(k)(psf)(k)(in·k)(in·k) Set: New Load Set : 1.4D 66.92 0 -2104.2 0 0 1295 21.39 13.33 26.06 Set: New Load Set : 1.2D + 1.6L +...91.16 0 -3467.3 0 0 1110 18.33 9.75 30.52 Set: New Load Set : 1.2D + 1.6L 86.16 0 -3086.8 0 0 1110 18.33 10.33 28.99 Set: New Load Set : 1.2D + 0.5L +...82.36 0 -3422.2 0 0 1110 18.33 9.05 29.53 Set: New Load Set : 1.2D + 1.6S 73.36 0 -3021.2 0 0 1110 18.33 9.32 27.53 Set: New Load Set : 1.2D + 0.5L +...71.36 0 -2585.1 0 0 1110 18.33 10.47 25.99 Set: New Load Set : 1.2D + 0.5S 62.36 0 -2184.1 0 0 1110 18.33 10.74 23.99 Set: New Load Set : (1.2 - 0.2Sds)...65.96 0 -3405.35 0 0 1064 17.57 6.96 27.51 Set: New Load Set : (1.2 + 0.2Sds...70.76 0 -3556.25 0 0 1156 19.1 7.98 29.32 Set: New Load Set : 1.2D + 0.5L +...68.36 0 -2356.8 0 0 1110 18.33 10.8 25.08 Set: New Load Set : (1.2 - 0.2Sds)...63.96 0 -3253.15 0 0 1064 17.57 7.29 26.79 Set: New Load Set : (1.2 + 0.2Sds...68.76 0 -3404.05 0 0 1156 19.1 8.22 28.69 Set: New Load Set : 1.2D + 0.5L 66.36 0 -2204.6 0 0 1110 18.33 11.11 24.39 Set: New Load Set : (1.2 - 0.2Sds)...56.96 0 -3004.35 0 0 1064 17.57 7.37 25.36 Set: New Load Set : (1.2 + 0.2Sds...61.76 0 -3155.25 0 0 1156 19.1 8.34 27.22 Set: New Load Set : 1.2D + 0.2S 59.36 0 -1955.8 0 0 1110 18.33 11.16 22.99 Set: New Load Set : (1.2 - 0.2Sds)...54.96 0 -2852.15 0 0 1064 17.57 7.59 24.76 Set: New Load Set : (1.2 + 0.2Sds...59.76 0 -3003.05 0 0 1156 19.1 8.53 26.65 Set: New Load Set : 1.2D 57.36 0 -1803.6 0 0 1110 18.33 11.43 22.33 Set: New Load Set : (0.9 - 0.2Sds)...40.62 0 -2401.25 0 0 786.1 12.98 4.74 19.17 Set: New Load Set : (0.9 + 0.2Sds...45.42 0 -2552.15 0 0 878.9 14.52 5.72 21.02 Set: New Load Set : 0.9D 43.02 0 -1352.7 0 0 832.5 13.75 8.57 16.75 Load Combination Mu +Z Cantilever Mu -Z Cantilever Vu +X Cantilever Vu -X Cantilever Vu +Z Cantilever Vu -Z Cantilever Vu Punching vu Punching Reqd dowel dev (footing) (in·k)(in·k)(k)(k)(k)(k)(k)(psi)(in) Set: New Load Set : 1.4D 1515 1515 0 0 67.96 67.96 19.71 32.98 19.17 Set: New Load Set : 1.2D + 1.6L +...1549 1549 0 0 69.49 69.49 42.89 57.49 19.17 Set: New Load Set : 1.2D + 1.6L 1512 1512 0 0 67.83 67.83 39.04 51.45 19.17 Set: New Load Set : 1.2D + 0.5L +...1483 1483 0 0 66.57 66.57 36.12 54.87 19.17 Set: New Load Set : 1.2D + 1.6S 1417 1417 0 0 63.58 63.58 29.2 47.62 19.17 Set: New Load Set : 1.2D + 0.5L +...1402 1402 0 0 62.91 62.91 27.66 41.56 19.17 Set: New Load Set : 1.2D + 0.5S 1335 1335 0 0 59.92 59.92 20.74 34.32 19.17 Set: New Load Set : (1.2 - 0.2Sds)...1325 1325 0 0 59.48 59.48 24.65 51.18 19.17 Set: New Load Set : (1.2 + 0.2Sds...1434 1434 0 0 64.35 64.35 26.06 53.54 19.17 Set: New Load Set : 1.2D + 0.5L +...1380 1380 0 0 61.91 61.91 25.35 37.93 19.17 Set: New Load Set : (1.2 - 0.2Sds)...1311 1311 0 0 58.81 58.81 23.11 48.76 19.17 Set: New Load Set : (1.2 + 0.2Sds...1419 1419 0 0 63.68 63.68 24.52 51.12 19.17 Set: New Load Set : 1.2D + 0.5L 1365 1365 0 0 61.25 61.25 23.82 35.51 19.17 Set: New Load Set : (1.2 - 0.2Sds)...1259 1259 0 0 56.48 56.48 17.73 43.93 19.17 Set: New Load Set : (1.2 + 0.2Sds...1367 1367 0 0 61.36 61.36 19.14 46.3 19.17 Set: New Load Set : 1.2D + 0.2S 1313 1313 0 0 58.92 58.92 18.43 30.69 19.17 Set: New Load Set : (1.2 - 0.2Sds)...1244 1244 0 0 55.82 55.82 16.19 41.52 19.17 Set: New Load Set : (1.2 + 0.2Sds...1352 1352 0 0 60.69 60.69 17.6 43.88 19.17 Set: New Load Set : 1.2D 1298 1298 0 0 58.26 58.26 16.89 28.27 19.17 Set: New Load Set : (0.9 - 0.2Sds)...919.3 919.3 0 0 41.25 41.25 11.96 34.45 19.17 Set: New Load Set : (0.9 + 0.2Sds...1028 1028 0 0 46.13 46.13 13.38 36.81 19.17 Set: New Load Set : 0.9D 973.6 973.6 0 0 43.69 43.69 12.67 21.2 19.17 Strength Check Results Summary Load Combination Factored Axial Factored Moment-X Factored Moment-Z Factored Shear-X Factored Shear-Z Factored Overburden Factored Footing Weight Max Applied Bearing Allowable Bearing (k)(in·k)(in·k)(k)(k)(psf)(k)(psf)(psf) Set: New Load Set : 1.0D + 1.0L 65.8 0 -2305 0 0 925 15.28 2335 4000 Set: New Load Set : 1.0D + 1.0S 57.8 0 -2264 0 0 925 15.28 2238 4000 Set: New Load Set : (1.0 - 0.14Sd...46.12 0 -2236.98 0 0 892.5 14.74 2081 4000 Set: New Load Set : (1.0 + 0.14Sd...49.48 0 -2342.62 0 0 957.5 15.82 2213 4000 Set: New Load Set : 1.0D 47.8 0 -1503 0 0 925 15.28 1906 4000 Set: New Load Set : 1.0D + 0.75L 61.3 0 -2104.5 0 0 925 15.28 2224 4000 Set: New Load Set : (1.0 - 0.105S...67.54 0 -3225.74 0 0 900.6 14.88 2611 4000 Set: New Load Set : (1.0 + 0.105S...70.06 0 -3304.96 0 0 949.4 15.68 2711 4000 Set: New Load Set : 1.0D + 0.75L ...68.8 0 -2675.25 0 0 925 15.28 2479 4000 Set: New Load Set : (0.6 - 0.14Sd...27 0 -1635.78 0 0 522.5 8.63 1320 4000 Set: New Load Set : (0.6 + 0.14Sd...30.36 0 -1741.42 0 0 587.5 9.7 1454 4000 Set: New Load Set : 0.6D 28.68 0 -901.8 0 0 555 9.17 1144 4000 Load Combination Actual F.S. Overturning-X Actual F.S. Overturning-Z Required F.S. Overturning Actual F.S. Sliding-X Actual F.S. Sliding-Z Required F.S. Sliding Actual F.S. Uplift Required F.S. Uplift Set: New Load Set : 1.0D + 1.0L 1.#IO 6.689 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 1.0D + 1.0S 1.#IO 6.478 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 - 0.14Sd...1.#IO 5.920 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 + 0.14Sd...1.#IO 6.065 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 1.0D 1.#IO 9.132 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 1.0D + 0.75L 1.#IO 7.125 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 - 0.105S...1.#IO 4.755 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (1.0 + 0.105S...1.#IO 4.860 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 1.0D + 0.75L ...1.#IO 5.869 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (0.6 - 0.14Sd...1.#IO 4.740 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : (0.6 + 0.14Sd...1.#IO 5.006 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Set: New Load Set : 0.6D 1.#IO 9.132 1.500 1.#IO 1.#IO 1.500 1.#IO 1.500 Stability Check Results Summary QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 2 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Footing X-Direction Capacity 6.5 ft 12 i n Y Z a As fy 0.85 F'c bw 2.48 in²60000 psi 0.85 3000 psi 78 in 0.75 in = = = 1 0.850 F'c  4000 psi = xa1 / 0.75 in 0.850 / 0.88 in = = = General Section Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 22.3», 22.2)  1.0 normal weight concrete = Mn As fy da2 / - 0.90 2.48 in²60000 psi 8.69 in 0.75 in 2 / - 1113 in·k = = = Vc 2 F'c bw d 0.750 21.0 3000 psi 78 in 8.69 in 55.67 k = = = Asmin 0.0018 60000 fy Ag 0.0018 60000 60000 psi 6.5 ft² 1.68 in² = = = t 0.003 d a 1 / 1 - 0.003 8.69 in 0.75 in 0.850 / 1 - 0.0266 = = = Capacity Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 7.5.3.1», 22.3», 22.2, 7.6.1.1, 22.5.5.1, 19.2.4, 21.2) t 1.0 12 inches or less cast below 3.00 inches - = e 1.0 bar not epoxy coated = s 0.80 bars are #6 or smaller =  1.0 normal weight concrete = s2 / 8.92 in 2 / 4.46 in = = cover db 2 / + 3 in 0.63 in 2 / + 3.31 in = = cb 3.31 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr + db 3.31 in 0.0 + 0.63 in 5.30 = = ld 3. 40 fy F'c t e s 2.5 db 3. 40 60000 psi 1.0 3000 psi 1.0 1.0 0.80 2.5 0.63 in 16.43 in = = = Development (ACI 318-14 13.2.8.1», 25.4.2) Capacity Calcs QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 3 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Footing Z-Direction Capacity 15.67 ft 12 i n Y X a As fy 0.85 F'c bw 5.58 in²60000 psi 0.85 3000 psi 188 in 0.7 in = = = 1 0.850 F'c  4000 psi = xa1 / 0.7 in 0.850 / 0.82 in = = = General Section Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 22.3», 22.2)  1.0 normal weight concrete = Mn As fy da2 / - 0.90 5.58 in²60000 psi 8.06 in 0.7 in 2 / - 2324 in·k = = = Vc 2 F'c bw d 0.750 21.0 3000 psi 188 in 8.06 in 124.6 k = = = Asmin 0.0018 60000 fy Ag 0.0018 60000 60000 psi 15.67 ft² 4.06 in² = = = t 0.003 d a 1 / 1 - 0.003 8.06 in 0.7 in 0.850 / 1 - 0.0264 = = = Capacity Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 7.5.3.1», 22.3», 22.2, 7.6.1.1, 22.5.5.1, 19.2.4, 21.2) t 1.0 12 inches or less cast below 3.00 inches - = e 1.0 bar not epoxy coated = s 0.80 bars are #6 or smaller =  1.0 normal weight concrete = s2 / 10.08 in 2 / 5.04 in = = cover db 2 / + 3 in 0.63 in 2 / + 3.31 in = = cb 3.31 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr + db 3.31 in 0.0 + 0.63 in 5.30 = = ld 3. 40 fy F'c t e s 2.5 db 3. 40 60000 psi 1.0 3000 psi 1.0 1.0 0.80 2.5 0.63 in 16.43 in = = = Development (ACI 318-14 13.2.8.1», 25.4.2) Capacity Calcs (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 4 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Footing Punching Shear Capacity 15.67 ft 6. 5 f t 188 in 18 . 3 8 i n Z X s 20.0 corner column =  1.0 normal weight concrete = a vc 4F'c 4 1.0 3000 psi 219.1 psi = = = b vc 2 4  + F'c 2 4 17.60 + 1.0 3000 psi 122 psi = = = c vc 2 s d bo + F'c 2 20.0 8.38 in 394.5 in + 1.0 3000 psi 132.8 psi = = = vn vc 0.750 122 psi 91.49 psi = = = Punching Shear (ACI 318-14 13.3.3.1», 8.5.3.1.2», 22.6.5, 22.6.1.2, 21.2.1) vx 1 1 1 2 3. bzbx + - 1 1 1 2 3. 18.38 in 188 in + - 0.1725 = = = vz 1 1 1 2 3. bxbz + - 1 1 1 2 3. 188 in 18.38 in + - 0.6808 = = = Jx 8230 in 4 calculated from ACI 318 R8.4.2.2.3 ^ = Jz 4985858 in 4 calculated from ACI 318 R8.4.2.2.3 ^ = Values needed for check (ACI 318-14 8.4.4.2.2, 8.4.2.3.2, R8.4.4.2.3) Capacity Calcs (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 5 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Factored Loads Axial Force 91.16 k Moment X 0 in·k Moment Z -3467.3 in·k Shear X 0 k Shear Z 0 k Overburden 1110 psf Footing Weight 18.33 k Pedestal Weight 0 k Factored Loads Axial Force 91.16 k Moment X 0 in·k Moment Z -3467.3 in·k Shear X 0 k Shear Z 0 k Overburden 1110 psf Footing Weight 18.33 k Pedestal Weight 0 k Resultant = 209 k (factored) Resultant location (X,Z) = (-1.38 ft, -0 ft) Max pressure (factored) = 3133 psf (Includes effects of overburden and footing weight) 3133 psf 970.7 psf 3133 psf 970.7 psf Z X Reinforcement Limits As 2.48 in²  Asmin 1.68 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) As 5.58 in²  Asmin 4.06 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) t 0.0266  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) t 0.0264  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) Footing Flexure 91.1 k 91.1 k Z X 10.1 k 3.28 k Z X Mz2 Rz2 dz2 3278 lb 2.98 in 9.75 in·k = = = Mn 1113 in·k  Mu 9.75 in·k = =  Z-Flexure (+X side) Mz1 Rz1 dz1 10103 lb 3.02 in 30.52 in·k = = = Mn 1113 in·k  Mu 30.52 in·k = =  Z-Flexure (-X side) Mx1 Rx1 dx1 91097 lb 17 in 1549 in·k = = = Mn 2324 in·k  Mu 1549 in·k = =  X-Flexure (+Z side) Mx2 Rx2 dx2 91097 lb 17 in 1549 in·k = = = Mn 2324 in·k  Mu 1549 in·k = =  X-Flexure (-Z side) Strength Checks [Load Set: New Load Set Combination: 1.2D + 1.6L + 0.5S] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 6 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Footing Shear 69.49 k 69.49 k Z X 0 k 0 k Z X Vx2 Rx4 0 lb 0 k = = = Vn 55.67 k  Vu 0 k = =  Shear (+X side) Vx1 Rx3 0 lb 0 k = = = Vn 55.67 k  Vu 0 k = =  Shear (-X side) Vz2 Rz4 69495 lb 69.49 k = = = Vn 124.6 k  Vu 69.49 k = =  Shear (+Z side) Vz1 Rz3 69495 lb 69.49 k = = = Vn 124.6 k  Vu 69.49 k = =  Shear (-Z side) Footing Punching Shear 48.27 k Z X Ppunching Ptotal Wp Pperimeter - + 91.16 k 0 k 48.27 k - + 42.89 k = = = vu Vubod vx Mux ez Jx vz Muz ex Jz + + = 42.89 k 394.5 in 8.38 in 0.1725 0 in·k 9.19 in 8230 in 4 ^ 0.6808 3467 in·k 94.02 in 4985858 in 4 ^ + + = 57.49 psi = vn 91.49 psi  vu 57.49 psi = =  Punching Shear Check (ACI 318-14 8.5.1.1(d), R8.4.4.2.3) Strength Checks [Load Set: New Load Set Combination: 1.2D + 1.6L + 0.5S] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 7 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Factored Loads Axial Force 66.92 k Moment X 0 in·k Moment Z -2104.2 in·k Shear X 0 k Shear Z 0 k Overburden 1295 psf Footing Weight 21.39 k Pedestal Weight 0 k Factored Loads Axial Force 66.92 k Moment X 0 in·k Moment Z -2104.2 in·k Shear X 0 k Shear Z 0 k Overburden 1295 psf Footing Weight 21.39 k Pedestal Weight 0 k Resultant = 204.4 k (factored) Resultant location (X,Z) = (-0.86 ft, -0 ft) Max pressure (factored) = 2669 psf (Includes effects of overburden and footing weight) 2669 psf 1344 psf 2669 psf 1344 psf Z X Reinforcement Limits As 2.48 in²  Asmin 1.68 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) As 5.58 in²  Asmin 4.06 in² = =  Min Steel Check (ACI 318-14 7.6.1.1) t 0.0266  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) t 0.0264  tmin 0.0040 = =  Min Strain Check (ACI 318-14 7.3.3.1) Footing Flexure 89.09 k 89.09 k Z X 8.63 k 4.45 k Z X Mz2 Rz2 dz2 4453 lb 2.99 in 13.33 in·k = = = Mn 1113 in·k  Mu 13.33 in·k = =  Z-Flexure (+X side) Mz1 Rz1 dz1 8634 lb 3.02 in 26.06 in·k = = = Mn 1113 in·k  Mu 26.06 in·k = =  Z-Flexure (-X side) Mx1 Rx1 dx1 89090 lb 17 in 1515 in·k = = = Mn 2324 in·k  Mu 1515 in·k = =  X-Flexure (+Z side) Mx2 Rx2 dx2 89090 lb 17 in 1515 in·k = = = Mn 2324 in·k  Mu 1515 in·k = =  X-Flexure (-Z side) Strength Checks [Load Set: New Load Set Combination: 1.4D] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 8 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Footing Shear 67.96 k 67.96 k Z X 0 k 0 k Z X Vx2 Rx4 0 lb 0 k = = = Vn 55.67 k  Vu 0 k = =  Shear (+X side) Vx1 Rx3 0 lb 0 k = = = Vn 55.67 k  Vu 0 k = =  Shear (-X side) Vz2 Rz4 67964 lb 67.96 k = = = Vn 124.6 k  Vu 67.96 k = =  Shear (+Z side) Vz1 Rz3 67964 lb 67.96 k = = = Vn 124.6 k  Vu 67.96 k = =  Shear (-Z side) Footing Punching Shear 47.21 k Z X Ppunching Ptotal Wp Pperimeter - + 66.92 k 0 k 47.21 k - + 19.71 k = = = vu Vubod vx Mux ez Jx vz Muz ex Jz + + = 19.71 k 394.5 in 8.38 in 0.1725 0 in·k 9.19 in 8230 in 4 ^ 0.6808 2104 in·k 94.02 in 4985858 in 4 ^ + + = 32.98 psi = vn 91.49 psi  vu 32.98 psi = =  Punching Shear Check (ACI 318-14 8.5.1.1(d), R8.4.4.2.3) Strength Checks [Load Set: New Load Set Combination: 1.4D] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 9 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Forces Factored Loads Axial Force 70.06 k Moment X 0 in·k Moment Z -3304.96 in·k Shear X 0 k Shear Z 0 k Overburden 949.4 psf Footing Weight 15.68 k Pedestal Weight 0 k Factored Loads Axial Force 70.06 k Moment X 0 in·k Moment Z -3304.96 in·k Shear X 0 k Shear Z 0 k Overburden 949.4 psf Footing Weight 15.68 k Pedestal Weight 0 k Resultant = 170.8 k Resultant location (X,Z) = (-1.61 ft, -0 ft) Max pressure = 2711 psf (Gross: Includes effects of footing weight and overburden) 2711 psf 643.4 psf 2711 psf 643.4 psf Z X qallow 4000 psf  qgross 2711 psf = =  Bearing Pressure Overturning 7.83 ft 7.83 ft 3. 2 5 f t 3. 2 5 f t Wf 15.68 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 949.4 psf 101.9 ft²12.22 ft² - 85.1 k = = = F.S. against overturning about X axis is infinite no applied moment OTMz Mz Vx tf Hp + + 3304.96 in·k - 0 k 12 in 0 in + + 3304.96 in·k - = = = RMz PWp + dx Wf Fob + bx 2 / + 70.06 k 0 k + 7.83 ft 15.68 k 85.1 k + 15.67 ft 2 / + 16062 in·k = = = FSOTZ RMzOTMz 16062 in·k 3304.96 in·k - 4.860 = = = FSOTZ 4.860  FSOTreqd 1.50 = =  Overturning Sliding Z X Wf 15.68 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 949.4 psf 101.9 ft²12.22 ft² - 85.1 k = = = Ffrict Cf Wf Wp Fob P + + + 0.40 15.68 k 0 k 85.1 k 70.06 k + + + 68.33 k = = = Fcoh cAftg 0 psf 101.9 ft² 0 k = = = FpassiveX 0 k = FpassiveZ 0 k = FresistX Ffrict Fcoh FpassiveX Faddl + + + 68.33 k 0 k 0 k 0 k + + + 68.33 k = = = FresistZ Ffrict Fcoh FpassiveZ Faddl + + + 68.33 k 0 k 0 k 0 k + + + 68.33 k = = = F.S. against sliding in X direction is infinite no applied force F.S. against sliding in Z direction is infinite no applied force Sliding Stability Checks [Load Set: New Load Set Combination: (1.0 + 0.105Sds)D + 0.75L + 0.75S + 0.525Epx QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 10 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Uplift Y X P 70.06 k = F.S. against uplift is infinite axial force is in compression Uplift Stability Checks [Load Set: New Load Set Combination: (1.0 + 0.105Sds)D + 0.75L + 0.75S + 0.525Epx QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 11 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Forces Factored Loads Axial Force 65.8 k Moment X 0 in·k Moment Z -2305 in·k Shear X 0 k Shear Z 0 k Overburden 925 psf Footing Weight 15.28 k Pedestal Weight 0 k Factored Loads Axial Force 65.8 k Moment X 0 in·k Moment Z -2305 in·k Shear X 0 k Shear Z 0 k Overburden 925 psf Footing Weight 15.28 k Pedestal Weight 0 k Resultant = 164 k Resultant location (X,Z) = (-1.17 ft, -0 ft) Max pressure = 2335 psf (Gross: Includes effects of footing weight and overburden) 2335 psf 885.4 psf 2335 psf 885.4 psf Z X qallow 4000 psf  qgross 2335 psf = =  Bearing Pressure Overturning 7.83 ft 7.83 ft 3. 2 5 f t 3. 2 5 f t Wf 15.28 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 925 psf 101.9 ft²12.22 ft² - 82.91 k = = = F.S. against overturning about X axis is infinite no applied moment OTMz Mz Vx tf Hp + + 2305 in·k - 0 k 12 in 0 in + + 2305 in·k - = = = RMz PWp + dx Wf Fob + bx 2 / + 65.8 k 0 k + 7.83 ft 15.28 k 82.91 k + 15.67 ft 2 / + 15418 in·k = = = FSOTZ RMzOTMz 15418 in·k 2305 in·k - 6.6890 = = = FSOTZ 6.6890  FSOTreqd 1.50 = =  Overturning Sliding Z X Wf 15.28 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 925 psf 101.9 ft²12.22 ft² - 82.91 k = = = Ffrict Cf Wf Wp Fob P + + + 0.40 15.28 k 0 k 82.91 k 65.8 k + + + 65.6 k = = = Fcoh cAftg 0 psf 101.9 ft² 0 k = = = FpassiveX 0 k = FpassiveZ 0 k = FresistX Ffrict Fcoh FpassiveX Faddl + + + 65.6 k 0 k 0 k 0 k + + + 65.6 k = = = FresistZ Ffrict Fcoh FpassiveZ Faddl + + + 65.6 k 0 k 0 k 0 k + + + 65.6 k = = = F.S. against sliding in X direction is infinite no applied force F.S. against sliding in Z direction is infinite no applied force Sliding Stability Checks [Load Set: New Load Set Combination: 1.0D + 1.0L] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 12 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Uplift Y X P 65.8 k = F.S. against uplift is infinite axial force is in compression Uplift Stability Checks [Load Set: New Load Set Combination: 1.0D + 1.0L] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 13 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Forces Factored Loads Axial Force 27 k Moment X 0 in·k Moment Z -1635.78 in·k Shear X 0 k Shear Z 0 k Overburden 522.5 psf Footing Weight 8.63 k Pedestal Weight 0 k Factored Loads Axial Force 27 k Moment X 0 in·k Moment Z -1635.78 in·k Shear X 0 k Shear Z 0 k Overburden 522.5 psf Footing Weight 8.63 k Pedestal Weight 0 k Resultant = 82.46 k Resultant location (X,Z) = (-1.65 ft, -0 ft) Max pressure = 1320 psf (Gross: Includes effects of footing weight and overburden) 1320 psf 299.1 psf 1320 psf 299.1 psf Z X qallow 4000 psf  qgross 1320 psf = =  Bearing Pressure Overturning 7.83 ft 7.83 ft 3. 2 5 f t 3. 2 5 f t Wf 8.63 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 522.5 psf 101.9 ft²12.22 ft² - 46.83 k = = = F.S. against overturning about X axis is infinite no applied moment OTMz Mz Vx tf Hp + + 1635.78 in·k - 0 k 12 in 0 in + + 1635.78 in·k - = = = RMz PWp + dx Wf Fob + bx 2 / + 27 k 0 k + 7.83 ft 8.63 k 46.83 k + 15.67 ft 2 / + 7753 in·k = = = FSOTZ RMzOTMz 7753 in·k 1635.78 in·k - 4.7397 = = = FSOTZ 4.7397  FSOTreqd 1.50 = =  Overturning Sliding Z X Wf 8.63 k weight of footing = Wp 0 k weight of pedestal = Fob qoverburden Aftg Aped - 522.5 psf 101.9 ft²12.22 ft² - 46.83 k = = = Ffrict Cf Wf Wp Fob P + + + 0.40 8.63 k 0 k 46.83 k 27 k + + + 32.99 k = = = Fcoh cAftg 0 psf 101.9 ft² 0 k = = = FpassiveX 0 k = FpassiveZ 0 k = FresistX Ffrict Fcoh FpassiveX Faddl + + + 32.99 k 0 k 0 k 0 k + + + 32.99 k = = = FresistZ Ffrict Fcoh FpassiveZ Faddl + + + 32.99 k 0 k 0 k 0 k + + + 32.99 k = = = F.S. against sliding in X direction is infinite no applied force F.S. against sliding in Z direction is infinite no applied force Sliding Stability Checks [Load Set: New Load Set Combination: (0.6 - 0.14Sds)D + 0.7Epx] QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 14 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 Ken Karston S.E., P.E. K.ENG LLC FTG UNDER SW7 Uplift Y X P 27 k = F.S. against uplift is infinite axial force is in compression Uplift Stability Checks [Load Set: New Load Set Combination: (0.6 - 0.14Sds)D + 0.7Epx] (continued) QuickFooting 5.0 (iesweb.com)P:\JOBS\Completed Jobs\2018\18-1015 232 E M...\SW FTG.ftg Page 15 of 15 Wednesday 02/10/21 1:19 AM03/01/2021 232 MAIN ASPEN COMBINED / MAT FOOTINGS MAT FTG.cpt 2/10/2021 RAM Concept © 2021 Bentley Systems, Inc. RAM Concept™ is a trademark of Bentley Systems 8.2 9 03/01/2021 Geometry Units Plan Dimensions: feet Slab Thickness: inches Support Dimensions: inches Angles: degrees Elevations: inches Support Height: feet Loading and Reaction Unit Point Force: Kips Line Force: kips/ft Area Force: psf - Report As Zero: 0 Kips - Report As Zero: 0 kips/ft - Report As Zero: 0 psf Point Moment: kip-ft Line Moment: Kips Area Moment: #/foot - Report As Zero: 0 kip-ft - Report As Zero: 0 Kips - Report As Zero: 0 #/foot Spring and Stiffness Unit Point Force Spring: kips/in Line Force Spring: ksi Area Force Spring: pci Point Moment Spring: k-ft/°Line Moment Spring: k/°Area Moment Spring: k/ft° Slab Analysis Units Force: Kips Moment: kip-ft Concrete Stress: psi - Report As Zero: 0 Kips - Report As Zero: 0 kip-ft - Report As Zero: 0 psi Force Per Width: kips/ft Moment Per Width: Kips Deflection: inches - Report As Zero: 0 kips/ft - Report As Zero: 0 Kips - Report As Zero: 0 inches Materials Units Concrete Volume: yd³Reinforcing Area: in²Reinforcement Weight: tons Tendon Force: Kips Tendon Force Per Width: kips/ft Tendon Profile: inches Reinforcing Stress: ksi PT Weight: pounds Cover: inches 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Units Units - 2 03/01/2021 Miscellaneous Unit Floor Area: ft²Density: pcf Elongations: inches Tendon Angles (for friction): radians Temperature Change: °F 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Units (2) Units - 3 03/01/2021 Positive Loads Positive Analysis Positive Reactions 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Signs Signs - 4 03/01/2021 Loading Name Type Analysis On-Pattern Factor Off-Pattern Factor Self-Dead Loading Self-Weight Normal 1 1 Balance Loading Balance Normal 1 1 Hyperstatic Loading Hyperstatic Hyperstatic 1 1 Other Dead Loading Dead Normal 1 1 Live (Unreducible) Loading Live (Unreducible)Normal 1 0 Snow Loading Snow Normal 1 1 Ultimate Seismic North Loading Ultimate Seismic 1 Normal 1 1 Ultimate Seismic East Loading Ultimate Seismic 2 Normal 1 1 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Loadings Loadings - 5 03/01/2021 All Dead LC Active Design Criteria: <none> Analysis: Zero-Tension Loading Standard Factor Self-Dead Loading 1 Other Dead Loading 1 Dead + Balance LC Active Design Criteria: <none> Analysis: Zero-Tension Loading Standard Factor Self-Dead Loading 1 Balance Loading 1 Other Dead Loading 1 Service LC: D + L Active Design Criteria: User Minimum Design, Code Minimum Design, Service Design, Soil Bearing Design Analysis: Zero-Tension Loading Standard Factor Self-Dead Loading 1 Balance Loading 1 Other Dead Loading 1 Live (Unreducible) Loading 1 Service LC: D + S Active Design Criteria: User Minimum Design, Code Minimum Design, Service Design, Soil Bearing Design Analysis: Zero-Tension Loading Standard Factor Self-Dead Loading 1 Balance Loading 1 Other Dead Loading 1 Snow Loading 1 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Load Combinations Load Combinations - 6 03/01/2021 Service LC: D + 0.75L + 0.75S Active Design Criteria: User Minimum Design, Code Minimum Design, Service Design, Soil Bearing Design Analysis: Zero-Tension Loading Standard Factor Self-Dead Loading 1 Balance Loading 1 Other Dead Loading 1 Live (Unreducible) Loading 0.75 Snow Loading 0.75 Service Seismic LC: D + 0.7E Active Design Criteria: Soil Bearing Design Analysis: Zero-Tension Key Lateral Loading: Seismic-Ultimate Standard Factor: 0.7 Loading Standard Factor Self-Dead Loading 1 Balance Loading 1 Other Dead Loading 1 Service Seismic LC: D - 0.7E Active Design Criteria: Soil Bearing Design Analysis: Zero-Tension Key Lateral Loading: Seismic-Ultimate Standard Factor: -0.7 Loading Standard Factor Self-Dead Loading 1 Balance Loading 1 Other Dead Loading 1 Service Seismic LC: D + 0.75L + 0.75S + 0.525E Active Design Criteria: Soil Bearing Design Analysis: Zero-Tension Key Lateral Loading: Seismic-Ultimate Standard Factor: 0.525 Loading Standard Factor Self-Dead Loading 1 Balance Loading 1 Other Dead Loading 1 Live (Unreducible) Loading 0.75 Snow Loading 0.75 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Load Combinations (2) Load Combinations - 7 03/01/2021 Service Seismic LC: D + 0.75L + 0.75S - 0.525E Active Design Criteria: Soil Bearing Design Analysis: Zero-Tension Key Lateral Loading: Seismic-Ultimate Standard Factor: -0.525 Loading Standard Factor Self-Dead Loading 1 Balance Loading 1 Other Dead Loading 1 Live (Unreducible) Loading 0.75 Snow Loading 0.75 Service Seismic LC: 0.6D + 0.7E Active Design Criteria: Soil Bearing Design Analysis: Zero-Tension Key Lateral Loading: Seismic-Ultimate Standard Factor: 0.7 Loading Standard Factor Self-Dead Loading 0.6 Balance Loading 1 Other Dead Loading 0.6 Service Seismic LC: 0.6D - 0.7E Active Design Criteria: Soil Bearing Design Analysis: Zero-Tension Key Lateral Loading: Seismic-Ultimate Standard Factor: -0.7 Loading Standard Factor Self-Dead Loading 0.6 Balance Loading 1 Other Dead Loading 0.6 Sustained Service LC Active Design Criteria: Sustained Service Design Analysis: Zero-Tension Loading Standard Factor Self-Dead Loading 1 Balance Loading 1 Other Dead Loading 1 Live (Unreducible) Loading 0.5 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Load Combinations (3) Load Combinations - 8 03/01/2021 Factored LC: 1.4D Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Design Analysis: Zero-Tension Loading Standard Factor Self-Dead Loading 1.4 Hyperstatic Loading 1 Other Dead Loading 1.4 Factored LC: 1.2D + 1.6L + 0.5S Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Design Analysis: Zero-Tension Loading Standard Factor Self-Dead Loading 1.2 Hyperstatic Loading 1 Other Dead Loading 1.2 Live (Unreducible) Loading 1.6 Snow Loading 0.5 Factored LC: 0.9D + 1.6L + 0.5S Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Design Analysis: Zero-Tension Loading Standard Factor Self-Dead Loading 0.9 Hyperstatic Loading 1 Other Dead Loading 0.9 Live (Unreducible) Loading 1.6 Snow Loading 0.5 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Load Combinations (4) Load Combinations - 9 03/01/2021 Factored LC: 1.2D + f1L + 1.6S Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Design Analysis: Zero-Tension Loading Standard Factor Self-Dead Loading 1.2 Hyperstatic Loading 1 Other Dead Loading 1.2 Live (Unreducible) Loading 1 Snow Loading 1.6 Factored LC: 0.9D + f1L + 1.6S Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Design Analysis: Zero-Tension Loading Standard Factor Self-Dead Loading 0.9 Hyperstatic Loading 1 Other Dead Loading 0.9 Live (Unreducible) Loading 1 Snow Loading 1.6 Factored Seismic LC: 1.2D + f1L + f2S + E Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Design Analysis: Zero-Tension Key Lateral Loading: Seismic-Ultimate Standard Factor: 1 Loading Standard Factor Self-Dead Loading 1.2 Hyperstatic Loading 1 Other Dead Loading 1.2 Live (Unreducible) Loading 1 Snow Loading 0.7 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Load Combinations (5) Load Combinations - 10 03/01/2021 Factored Seismic LC: 1.2D + f1L + f2S - E Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Design Analysis: Zero-Tension Key Lateral Loading: Seismic-Ultimate Standard Factor: -1 Loading Standard Factor Self-Dead Loading 1.2 Hyperstatic Loading 1 Other Dead Loading 1.2 Live (Unreducible) Loading 1 Snow Loading 0.7 Factored Seismic LC: 0.9D + E Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Design Analysis: Zero-Tension Key Lateral Loading: Seismic-Ultimate Standard Factor: 1 Loading Standard Factor Self-Dead Loading 0.9 Hyperstatic Loading 1 Other Dead Loading 0.9 Factored Seismic LC: 0.9D - E Active Design Criteria: User Minimum Design, Code Minimum Design, Strength Design, Ductility Design Analysis: Zero-Tension Key Lateral Loading: Seismic-Ultimate Standard Factor: -1 Loading Standard Factor Self-Dead Loading 0.9 Hyperstatic Loading 1 Other Dead Loading 0.9 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Load Combinations (6) Load Combinations - 11 03/01/2021 4 5 A B C C.2 D D.4 E.8 F 1 2 9.1 8.5 F.9 F.8 G 5 KFz=75 KFz=75 KFz=75 KFz=75 Priority=1 Priority=1 Priority=1 Priority=20 Mesh Input: Beams; Beam Priorities; Slab Areas; Slab Area Priorities; Slab Openings; Slab Opening Priorities; Point Supports; Point Support Icons; Line Supports; Line Support Icons; Walls Above; Walls Below; Columns Above; Co Drawing Import: User Notes; User Lines; User Dimensions; C-PROP-LINE; S-COLS; 0; I-WALL; A-DETL-MBND; A-WALL-PATT; A-DETL-THIN; S-FNDN; A-DETL-GENF; A-WALL-HDLN; A-DETL-HDLN; A-WALL; A-DETL; A-DETL-MEDM; S Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Mesh Input: Standard Plan Mesh Input: Standard Plan - 12 03/01/2021 t=18 TOC=0 4000 psi t=12 TOC=0 4000 psi t=12 TOC=0 4000 psi t=12 TOC=0 4000 psi t=12 TOC=0 4000 psi t=12 TOC=0 4000 psi Element: User Lines; User Notes; User Dimensions; Wall Elements Below; Wall Elements Above; Column Elements Below; Column Elements Above; Point Springs; Point Spring Icons; Line Springs; Line Spring Icons; Slab Elements Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Element: Slab Summary Plan Element: Slab Summary Plan - 13 03/01/2021 4 5 A B C C.2 D D.4 E.8 F 1 2 9.1 8.5 F.9 F.8 G Fz=4.5Fz=5.6 Fz=15 Fz=21 Fz=21.4 Fz=18 Fz=29.1 Fz=0.8 Fz=23 Fz=3 Fz=5 Fz=5 Other Dead Loading: Point Loads; Point Load Icons; Point Load Values; User Notes; User Lines; User Dimensions; Drawing Import: User Notes; User Lines; User Dimensions; 0; S-COLS; S-FNDN; A-WALL; A-DETL-THIN; A-DETL-CNTR; A-DETL-MBND; A-DETL; A-WALL-PATT; A-DETL-HDLN; A-DETL-MEDM; G-ANNO-SYMB; I-WALL; S-GRID-IDEN; A Element: Wall Elements Above; Wall Elements Below; Wall Element Outline Only; Column Elements Above; Column Elements Below; Slab Elements; Slab Element Outline Only; Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Other Dead Loading: Point Loads Plan Other Dead Loading: Point Loads Plan - 14 03/01/2021 4 5 A B C C.2 D D.4 E.8 F 1 2 9.1 8.5 F.9 F.8 G Fz=1 Fz=1 Fz=1 Fz=1Fz=2.6 Fz=2.6 Fz=3.1 Fz=3.1 Fz=0.26 Fz=0.26 Fz=0.26 Fz=0.26 Other Dead Loading: Line Loads; Line Load Icons; Line Load Values; User Notes; User Lines; User Dimensions; Drawing Import: User Notes; User Lines; User Dimensions; A-WALL; A-DETL-HDLN; A-DETL-MBND; Defpoints; 0; C-PROP-LINE; S-FNDN; A-DETL-GENF; A-WALL-HDLN; A-WALL-PATT; A-DETL-DEMO; S-GRID-IDEN; S-COLS; A-DETL Element: Wall Elements Above; Wall Elements Below; Wall Element Outline Only; Column Elements Above; Column Elements Below; Slab Elements; Slab Element Outline Only; Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Other Dead Loading: Line Loads Plan Other Dead Loading: Line Loads Plan - 15 03/01/2021 4 5 A B C C.2 D D.4 E.8 F 1 2 9.1 8.5 F.9 F.8 G Fz=3 Fz=5 Fz=2.1 Fz=0.8 Fz=1.6 Fz=1.4 Live (Unreducible) Loading: Point Loads; Point Load Icons; Point Load Values; User Notes; User Lines; User Dimensions; Drawing Import: User Notes; User Lines; User Dimensions; A-DETL-MEDM; A-DETL-DEMO; S-GRID; A-WALL; S-COLS; I-WALL; C-PROP-LINE; A-WALL-PATT; A-DETL-GENF; A-WALL-HDLN; A-DETL-MBND; S-FNDN; A-DETL; A-DETL-C Element: Wall Elements Above; Wall Elements Below; Wall Element Outline Only; Column Elements Above; Column Elements Below; Slab Elements; Slab Element Outline Only; Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Live (Unreducible) Loading: Point Loads Plan Live (Unreducible) Loading: Point Loads Plan - 16 03/01/2021 4 5 A B C C.2 D D.4 E.8 F 1 2 9.1 8.5 F.9 F.8 G Fz=0.44 Fz=0.44 Live (Unreducible) Loading: Line Loads; Line Load Icons; Line Load Values; User Notes; User Lines; User Dimensions; Drawing Import: User Notes; User Lines; User Dimensions; A-DETL-MEDM; Defpoints; A-DETL-HDLN; G-ANNO-SYMB; C-PROP-LINE; S-GRID; A-ANNO-DIMS-64; A-DETL-MBND; A-WALL; A-DETL-GENF; A-WALL-PATT; A-DETL-THIN; S Element: Wall Elements Above; Wall Elements Below; Wall Element Outline Only; Column Elements Above; Column Elements Below; Slab Elements; Slab Element Outline Only; Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Live (Unreducible) Loading: Line Loads Plan Live (Unreducible) Loading: Line Loads Plan - 17 03/01/2021 4 5 A B C C.2 D D.4 E.8 F 1 2 9.1 8.5 F.9 F.8 G Fz=5.4Fz=7.2 Fz=26 Fz=26 Fz=1.7 Fz=4 Fz=2 Fz=1.1 Fz=2.7 Fz=4 Fz=5 Fz=5 Snow Loading: Point Loads; Point Load Icons; Point Load Values; User Notes; User Lines; User Dimensions; Drawing Import: User Notes; User Lines; User Dimensions; A-DETL-GENF; A-DETL; S-FNDN; A-WALL-PATT; A-WALL-HDLN; S-COLS; A-DETL-HDLN; A-DETL-DEMO; A-DETL-MEDM; A-DETL-THIN; A-DETL-CNTR; A-ANNO-DIMS; I-WAL Element: Wall Elements Above; Wall Elements Below; Wall Element Outline Only; Column Elements Above; Column Elements Below; Slab Elements; Slab Element Outline Only; Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Snow Loading: Point Loads Plan Snow Loading: Point Loads Plan - 18 03/01/2021 4 5 A B C C.2 D D.4 E.8 F 1 2 9.1 8.5 F.9 F.8 G Fz=0.62 Fz=0.62 Fz=0.62 Fz=0.62 Snow Loading: Line Loads; Line Load Icons; Line Load Values; User Notes; User Lines; User Dimensions; Drawing Import: User Notes; User Lines; User Dimensions; I-WALL; A-DETL-MEDM; A-ANNO-DIMS-64; S-COLS; A-DETL-THIN; C-PROP-LINE; A-DETL-HDLN; G-ANNO-SYMB; A-WALL-HDLN; A-DETL-CNTR; A-DETL; S-GRID; A-WALL; Element: Wall Elements Above; Wall Elements Below; Wall Element Outline Only; Column Elements Above; Column Elements Below; Slab Elements; Slab Element Outline Only; Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Snow Loading: Line Loads Plan Snow Loading: Line Loads Plan - 19 03/01/2021 4 5 A B C C.2 D D.4 E.8 F 1 2 9.1 8.5 F.9 F.8 G My=234 My=275 Mx=205 My=471 Ultimate Seismic East Loading: Point Loads; Point Load Icons; Point Load Values; Line Loads; Line Load Icons; Line Load Values; Area Loads; Area Load Icons; Area Load Values; User Notes; User Lines; User Dimensions; Drawing Import: User Notes; User Lines; User Dimensions; G-ANNO-TEXT; A-DETL-MEDM; S-FNDN; A-DETL; A-ANNO-DIMS; A-WALL-PATT; S-GRID; A-DETL-HDLN; A-ANNO-DIMS-64; 0; A-DETL-THIN; Defpoints; S-GRID-IDEN; S-COL Element: Wall Elements Above; Wall Elements Below; Wall Element Outline Only; Column Elements Above; Column Elements Below; Slab Elements; Slab Element Outline Only; Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Ultimate Seismic East Loading: All Loads Plan Ultimate Seismic East Loading: All Loads Plan - 20 03/01/2021 4 5 A B C C.2 D D.4 E.8 F 1 2 9.1 8.5 F.9 F.8 G Mx=122 Mx=33 Ultimate Seismic North Loading: Point Loads; Point Load Icons; Point Load Values; Line Loads; Line Load Icons; Line Load Values; Area Loads; Area Load Icons; Area Load Values; User Notes; User Lines; User Dimensions; Drawing Import: User Notes; User Lines; User Dimensions; 0; A-WALL-HDLN; A-ANNO-DIMS-64; S-COLS; A-DETL-HDLN; G-ANNO-SYMB; A-DETL-CNTR; A-DETL-DEMO; A-WALL; A-DETL-GENF; S-GRID; S-FNDN; A-DETL-MEDM; I-WA Element: Wall Elements Above; Wall Elements Below; Wall Element Outline Only; Column Elements Above; Column Elements Below; Slab Elements; Slab Element Outline Only; Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Ultimate Seismic North Loading: All Loads Plan Ultimate Seismic North Loading: All Loads Plan - 21 03/01/2021 800 1100 1100 800 700 Service LC: D + L: User Lines; User Notes; User Dimensions; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:135 Service LC: D + L - Area Spring Vertical Reactions Plot (Maximum Values) 500 600 700 800 900 1000 1100 1200 1300 Min Value = 408.1 psf @ (22.11,-41.34) Max Value = 1376 psf @ (3.346,10.83) 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Service LC: D + L: Max Soil Bearing Pressure Plan Service LC: D + L: Max Soil Bearing Pressure Plan - 22 03/01/2021 1200 1200 1000 600 500 Service LC: D + 0.75L + 0.75S: User Lines; User Notes; User Dimensions; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:135 Service LC: D + 0.75L + 0.75S - Area Spring Vertical Reactions Plot (Maximum Values) 500 600 700 800 900 1000 1100 1200 1300 Min Value = 412.2 psf @ (22.11,-41.34) Max Value = 1402 psf @ (3.346,10.83) 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Service LC: D + 0.75L + 0.75S: Max Soil Bearing Pressure Plan Service LC: D + 0.75L + 0.75S: Max Soil Bearing Pressure Plan - 23 03/01/2021 800 1600 1400 1000 1400 600 Service Seismic LC: D + 0.7E: User Lines; User Notes; User Dimensions; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:135 Service Seismic LC: D + 0.7E - Area Spring Vertical Reactions Plot (Maximum Values) 400 600 800 1000 1200 1400 1600 1800 2000 Min Value = 379 psf @ (17.11,-25.62) Max Value = 2468 psf @ (10.26,1.305) 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Service Seismic LC: D + 0.7E: Max Soil Bearing Pressure Plan Service Seismic LC: D + 0.7E: Max Soil Bearing Pressure Plan - 24 03/01/2021 800 1200 1800 600 400 Service Seismic LC: 0.6D + 0.7E: User Lines; User Notes; User Dimensions; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:135 Service Seismic LC: 0.6D + 0.7E - Area Spring Vertical Reactions Plot (Maximum Values) 200 400 600 800 1000 1200 1400 1600 1800 Min Value = 192.4 psf @ (17.11,-25.62) Max Value = 2379 psf @ (10.26,1.305) 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Service Seismic LC: 0.6D + 0.7E: Max Soil Bearing Pressure Plan Service Seismic LC: 0.6D + 0.7E: Max Soil Bearing Pressure Plan - 25 03/01/2021 21002100 1500 300 Service Seismic LC: 0.6D - 0.7E: User Lines; User Notes; User Dimensions; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:135 Service Seismic LC: 0.6D - 0.7E - Area Spring Vertical Reactions Plot (Maximum Values) 300 600 900 1200 1500 1800 2100 2400 2700 Min Value = 185.4 psf @ (22.11,-41.34) Max Value = 2695 psf @ (-1.842,10.83) 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Service Seismic LC: 0.6D - 0.7E: Max Soil Bearing Pressure Plan Service Seismic LC: 0.6D - 0.7E: Max Soil Bearing Pressure Plan - 26 03/01/2021 2 1 2 3 2 1 6 2 5 1 2 4 5 2 3 -2 -2 Factored LC: 1.2D + 1.6L + 0.5S: User Lines; User Notes; User Dimensions; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:135 Factored LC: 1.2D + 1.6L + 0.5S - Bending Moment Plot (Maximum Values) (X-Axis Direction) One Contour = 0.2 Kips Min Value = -2.459 Kips @ (17.11,-22.05) Max Value = 8.025 Kips @ (-1.842,6.264) 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Factored LC: 1.2D + 1.6L + 0.5S: Max Mx Plan Factored LC: 1.2D + 1.6L + 0.5S: Max Mx Plan - 27 03/01/2021 2 -4 -5 2 2 -2 -1 8 7 1 5 0 2 -2 5 2 5 0 2 3 1 Factored LC: 1.2D + 1.6L + 0.5S: User Lines; User Notes; User Dimensions; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:135 Factored LC: 1.2D + 1.6L + 0.5S - Bending Moment Plot (Maximum Values) (Y-Axis Direction) One Contour = 0.2 Kips Min Value = -5.472 Kips @ (-17.69,-12.76) Max Value = 9.304 Kips @ (4.211,10.83) 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Factored LC: 1.2D + 1.6L + 0.5S: Max My Plan Factored LC: 1.2D + 1.6L + 0.5S: Max My Plan - 28 03/01/2021 2 3 2 1 1 3 7 5 1 8 4 5 4 4 1 3 2 1 2 2 3 -3 3 1 -3 Factored LC: 1.2D + f1L + 1.6S: User Lines; User Notes; User Dimensions; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:135 Factored LC: 1.2D + f1L + 1.6S - Bending Moment Plot (Maximum Values) (X-Axis Direction) One Contour = 0.2 Kips Min Value = -3.122 Kips @ (17.11,-22.05) Max Value = 9.182 Kips @ (-1.63,-10.2) 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Factored LC: 1.2D + f1L + 1.6S: Max Mx Plan Factored LC: 1.2D + f1L + 1.6S: Max Mx Plan - 29 03/01/2021 0 -5 2.5 2.5 2.5 12.5 12.5 0 -2.5 -2.5 2.5 Factored LC: 1.2D + f1L + 1.6S: User Lines; User Notes; User Dimensions; Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:135 Factored LC: 1.2D + f1L + 1.6S - Bending Moment Plot (Maximum Values) (Y-Axis Direction) One Contour = 0.5 Kips Min Value = -5.961 Kips @ (-17.69,-12.76) Max Value = 15.55 Kips @ (-1.63,-10.2) 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Factored LC: 1.2D + f1L + 1.6S: Max My Plan Factored LC: 1.2D + f1L + 1.6S: Max My Plan - 30 03/01/2021 (9)#6x56.1T #5x12@10T #4x5@12T #6 x 4 . 8 3 @ 1 2 T #5 x 9 . 5 @ 1 0 T (1 1 ) # 4 x 3 3 . 1 T Reinforcement: User Lines; User Notes; User Dimensions; Latitude User Concentrated Reinf.; Latitude Program Concentrated Reinf.; Latitude User Distributed Reinf.; Latitude Program Distributed Reinf.; Longitude User Concentrate Element: Wall Elements Below; Wall Elements Above; Wall Element Outline Only; Column Elements Below; Column Elements Above; Slab Elements; Slab Element Outline Only; Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Reinforcement: Top Bars Plan Reinforcement: Top Bars Plan - 31 03/01/2021 (9)#6x56.1B #5x11.9@10B#5x11.9@10B #4x4.83@12B #6 x 4 . 8 3 @ 1 2 B #5 x 9 . 3 5 @ 1 0 B #6 x 4 . 8 3 @ 1 2 B (1 1 ) # 4 x 3 3 . 2 B Reinforcement: Latitude User Concentrated Reinf.; Longitude User Concentrated Reinf.; Latitude Program Concentrated Reinf.; Longitude Program Concentrated Reinf.; Bottom Face Concentrated Reinf.; Both Faces Concentrated R Element: Wall Elements Above; Wall Elements Below; Wall Element Outline Only; Column Elements Above; Column Elements Below; Slab Elements; Slab Element Outline Only; Scale = 1:135 232 MAIN ASPEN - MAT FTG.cpt - 2/10/2021 Reinforcement: Bottom Bars Plan Reinforcement: Bottom Bars Plan - 32 03/01/2021 03/01/2021